Toward a standard S }S\'TC%T?/%
BatChed BIAS API ® : COMPUTING LABORATHRY

v e
S e L@ O
S 4 -! 4[}!\[!1]3\/ATIV

Azzam Haidar

w/, A. Abdelfatah, I-'I.:Anzi’, J. Dongarra, M. Gates, =%
J. Kurzak, P. Luszczek, S. Tomov, and l. Yamazaki

kS

\ ,/"" O
Innovative Computmg Laboratory

\\.

Umver51ty of Tennesseie, Knoxville
,/ \,
/‘//
5 RN 4 |COMPWTING LABORATHORY
Batched, Reproduciblédand Reduced-Precision BLAS \ L~ /

SC'17, Denvef, O, USA .,’/" : ICL@U"
12-17 November, 2017 ” e ||\ND\IAT|VE

COMPUTING LABORATFTORY

— &
Toward a standard Batched BLAS API

Linear Algebra on small problems are needed in many applications:

Machine learning,

Data mining,
High-order FEM,
Numerical LA,

Graph analysis,
Neuroscience,
Astrophysics,

Quantum chemistry,
Multi-physics problems,
Signal processing, etc

Toward a standard Batched BLAS API

Status and goal
»Batched BLAS functionalities becomes a major factor in our
community

o Batched routines gradually make their steps into vendor libraries (Intel, Nvidia,
etc) as well as into research software (MAGMA, Kokkos, etc)

» Today’s API differ significantly which can lead to poor
portability

» Thus the community needs to make an effort to
standardize the Batched BLAS API

5 h
Toward a standard Batched BLAS API

Status and goal

»Heterogeneity in the hardware (GPU, Phi, CPU) deeply
complicates efforts to provide a standard interface

o The calling interface may affect the implementation (performance)
which depend on the architecture

» Our objective today, is to try to define a cross-
architecture standard without a severe performance

penalty

» Other API's could be considered as auxiliary APl's or API
with extra features

— .
Toward a standard Batched BLAS API

Matrices are stored BLAS-like “the usual storage that we know”
o array of pointers: that consists of a pointer to each matrix

» Data could belong to one memory allocation _:I
« Data could be anywhere, different allocations

« Matrices could be equidistant or not from each other
e |s suitable for CPU, GPU, Phi
« Accommodate most of the cases

S ‘ﬁ

» User has to fill-up the array of pointers

s T
Toward a standard Batched BLAS API

Matrices are stored BLAS like “the usual storage that we know”
o array of pointers: that consists of a pointer to each matrix

o strided: as one pointer to a memory and matrices are strided inside

o Suitable for CPU, GPU, Phi

o For variable stride, user has to fill-up the array

o Cannot accommodate data that was not been allocated within the same
chunk of memory. Think about adding matrices to the batch.

y Ok
Toward a standard Batched BLAS API

Matrices are stored BLAS like “the usual storage that we know”
o array of pointers: that consists of a pointer to each matrix

o strided: as one pointer to a memory and matrices are strided inside

Matrices are stored in interleaved fashion or compact

o data can be interleaved by batchcount or by chunk (SIMD, AVX,
Warp)

o Is only good for sizes less than 20 and only for some routines such
as GEMM, TRSM, while it has performance and implementation
issues for routines like LU or QR factorization

o Requires user or implementation to convert/reshuffle the memory

storage since most of the storage are BLAS-like

5 h
Toward a standard Batched BLAS API

APl discussion

» Same or separate API for fixed and variable size batches?
o Have two separate API's?

o Have a flag that switch between fixed and variable?

» To simplify user life and avoid a combinatorial combination of parameter, we
propose to distinguish between fixed and variable size APIs

volid batchedblas dgemm vbatched (
batched trans t transA , batched trans t transB ,
batched int t *m, batched int t *n, batched int t *k,
double alpha ,
double const * const *dA array , batched int t *ldda ,
double const * const *dB array , batched int t *1lddb ,
double beta ,
double **dC array , batched int t *1lddc ,
batched int t batchCount , batched queue t gqueue);

Toward a standard Batched BLAS API

APl discussion

» Same or separate API for fixed and variable size batches?
o Have two separate API's?

o Have a flag that switch between fixed and variable?

* To simplify user life and avoid a combinatorial combination of
parameters, we propose to distinguish between fixed and
variable size APIs

>Gr0up API BBLAS_dgemm(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA, B, LDB, BETA, C, LDC,
o Is not suitable for GPU GROUP_COUNT, SIZE_PER_GROUP, INFO)

o Force the user to build groups before calling the routine then why

not having different calls

Toward a standard Batched BLAS API

Error Handling

» Legacy Error Reporting Methods “xerbla”
o Use of global state

o Dependence on platform-specific features
o Limited customization

o LAPACK has additional output error parameter “info”

o For batched BLAS, also a xerbla output may not indicate which
matrix had the error

Toward a standard Batched BLAS API

Error Handling
» Legacy Error Reporting Methods “xerbla”
» Does batched BLAS need checking?

o All errors reported

o Some errors reported
o No errors reported

Can be accomplished by the “info” array

Summary

» Separate API for fixed and variable size batches

» Using standard storage “BLAS like”

» Use array of “info” for error reporting allowing for different level of reporting
» Other API's could be considered as auxiliary APl's or API with extra features

void batchedblas dgemm batched (
batched trans t transA , batched trans t transB ,
batched int t m, batched int t n, batched int t k,
double alpha ,
double const * const * dA array , batched int t ldda ,
double const * const * dB array , batched int t 1lddb ,
double beta ,
double ** dC array , batched int t 1lddc ,
batched int t batchCount , batched queue t queue
batched int t *info);

Summary

» Separate API for fixed and variable size batches

» Using standard storage “BLAS like”

» Use array of “info” for error reporting allowing for different level of reporting
» Other API's could be considered as auxiliary APl's or API with extra features

Reference:

Jack Dongarra, lan Duff, Mark Gates, Azzam Haidar, Sven Hammarling, Nicholas J. Higham, Jonathon Hogg, Pedro Valero-Lara, Samuel D.
Relton, Stanimire Tomov, and Mawussi Zounon.
A proposed API for Batched Basic Linear Algebra Subprograms.

Technical Report MIMS Eprint: 2016.25, Manchester Institute for Mathematical Sciences, School of Mathematics, April 2016. The Uni- versity
of Manchester, ISSN 1749-9097.

Timothy Costa Jack Dongarra Piotr Luszczek Mawussi Zounon
Extension to Batched Basic Linear Algebra Subprograms
Internal Technical Report University of Tennessee

