
Azzam Haidar

w/, A. Abdelfatah, H. Anzt, J. Dongarra, M. Gates,
 J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki
	
Innovative	Computing	Laboratory	
University	of	Tennessee,	Knoxville	

Batched, Reproducible, and Reduced Precision BLAS

SC’17, Denver, CO, USA

12-17 November, 2017

Toward	a	standard		
Batched	BLAS	API		

Toward	a	standard	Batched	BLAS	API		
Linear Algebra on small problems are needed in many applications:
•  Machine learning,
•  Data mining,
•  High-order FEM,
•  Numerical LA,
•  Graph analysis,
•  Neuroscience,
•  Astrophysics,
•  Quantum chemistry,
•  Multi-physics problems,
•  Signal processing, etc

•  .

Toward	a	standard	Batched	BLAS	API		
Status and goal
Ø Batched BLAS functionalities becomes a major factor in our

community
o Batched routines gradually make their steps into vendor libraries (Intel, Nvidia,

etc) as well as into research software (MAGMA, Kokkos, etc)

Ø Today’s API differ significantly which can lead to poor
portability

Ø Thus the community needs to make an effort to
standardize the Batched BLAS API

Toward	a	standard	Batched	BLAS	API		
Status and goal
Ø Heterogeneity in the hardware (GPU, Phi, CPU) deeply

complicates efforts to provide a standard interface
o The calling interface may affect the implementation (performance)

which depend on the architecture

Ø Our objective today, is to try to define a cross-
architecture standard without a severe performance
penalty

Ø Other API’s could be considered as auxiliary API’s or API
with extra features

Toward	a	standard	Batched	BLAS	API		
Matrices are stored BLAS-like “the usual storage that we know”

o array of pointers: that consists of a pointer to each matrix
•  Data could belong to one memory allocation
•  Data could be anywhere, different allocations
•  Matrices could be equidistant or not from each other
•  Is suitable for CPU, GPU, Phi
•  Accommodate most of the cases

•  User has to fill-up the array of pointers

Toward	a	standard	Batched	BLAS	API		
Matrices are stored BLAS like “the usual storage that we know”

o array of pointers: that consists of a pointer to each matrix
o strided: as one pointer to a memory and matrices are strided inside

o Fixed stride
o Variable stride
o Suitable for CPU, GPU, Phi

o For variable stride, user has to fill-up the array
o Cannot accommodate data that was not been allocated within the same

chunk of memory. Think about adding matrices to the batch.

Toward	a	standard	Batched	BLAS	API		
Matrices are stored BLAS like “the usual storage that we know”

o array of pointers: that consists of a pointer to each matrix
o strided: as one pointer to a memory and matrices are strided inside

Matrices are stored in interleaved fashion or compact
o data can be interleaved by batchcount or by chunk (SIMD, AVX,

Warp)
o Is only good for sizes less than 20 and only for some routines such

as GEMM, TRSM, while it has performance and implementation
issues for routines like LU or QR factorization

o Requires user or implementation to convert/reshuffle the memory
storage since most of the storage are BLAS-like

Toward	a	standard	Batched	BLAS	API		
API discussion
Ø Same or separate API for fixed and variable size batches?

o Have two separate API’s?
o Have a flag that switch between fixed and variable?
§  To simplify user life and avoid a combinatorial combination of parameter, we

propose to distinguish between fixed and variable size APIs
void batchedblas_dgemm_batched (

batched_trans_t transA , batched_trans_t transB ,
batched_int_t m, batched_int_t n, batched_int_t k,
double alpha ,
double const * const * dA_array , batched_int_t ldda ,
double const * const * dB_array , batched_int_t lddb ,
double beta ,
double ** dC_array , batched_int_t lddc ,
batched_int_t batchCount , batched_queue_t queue);

void batchedblas_dgemm_vbatched (
batched_trans_t transA , batched_trans_t transB ,
batched_int_t *m, batched_int_t *n, batched_int_t *k,
double alpha ,
double const * const *dA_array , batched_int_t *ldda ,
double const * const *dB_array , batched_int_t *lddb ,
double beta ,
double **dC_array , batched_int_t *lddc ,
batched_int_t batchCount , batched_queue_t queue);

Toward	a	standard	Batched	BLAS	API		
API discussion
Ø Same or separate API for fixed and variable size batches?

o Have two separate API’s?
o Have a flag that switch between fixed and variable?
§  To simplify user life and avoid a combinatorial combination of

parameters, we propose to distinguish between fixed and
variable size APIs

Ø Group API
o Is not suitable for GPU
o Force the user to build groups before calling the routine then why

not having different calls

many matrices which have a fixed size. This use case appears
to straddle the two APIs, and it is not obvious what the ideal ap-
proach should be—multiple calls to a fixed-size API or one call
with redundant inputs to a variable-size API. In contrast, the
group-based API presented in Section 2.4 handles this common
case naturally.

2.3 Flag-Based API

A second option for distinguishing between fixed and variable
sizes is to use a flag to switch between fixed and variable
batches. While this API addresses the concern of supporting
multiple APIs, the other drawbacks of the fixed and variable
batch APIs remain.

2.4 Group-Based API

The group-based API handles the issue of varied matrix sizes
and varied function parameters by introducing a “group” con-
cept. A group is a collection of matrices for which the ma-
trix dimensions, scalars, and other problem characteristics
are identical. Within a group, matrix pointers are the only
variation between problems to be performed in the batched
call. The BBLAS API then accepts multiple groups per func-
tion call. This effectively combines the fixed-size API and
the variable-size API—considered previously—into one API.
Group-based API inputs are designed to be a consistent tran-
sition from the BLAS function API to the batched API. Ac-
cordingly, where there was an integer, there is now an array of
integers, where the length of the array is the number of groups
in the call. Since each group can be comprised of any number
of problems, the group API requires two additional arguments
when compared with the BLAS API: (1) GROUP_COUNT and (2)
SIZE_PER_GROUP. These arguments are shown in the second
example below. While we isolate a batched DGEMM call in the
example, the extension from the standard DGEMM API to the
group-based batched DGEMM API is directly translatable to any
BLAS functions. Recall the Fortran DGEMM API, shown below.

1 DGEMM(TRANSA , TRANSB , M, N, K,
2 ALPHA , A, LDA , B, LDB , BETA , C, LDC)

Here, TRANSA and TRANSB are characters identifying whether or
not the A and B matrices are transposed. M, N, and K are integers
specifying the matrix dimensions. ALPHA and BETA are double-
precision scalars. A, B, and C are double-precision arrays. LDA
is an integer specifying the leading dimension of matrix A, LDB
is an integer specifying the leading dimension of matrix B, and
LDC is an integer specifying the leading dimension of matrix C.
The group-based batched DGEMM API is then given by:

1 BBLAS_dgemm(TRANSA , TRANSB , M, N, K,
2 ALPHA , A, LDA , B, LDB , BETA , C, LDC ,
3 GROUP_COUNT , SIZE_PER_GROUP , INFO)

As mentioned above, GROUP_COUNT is an integer that
specifies the number of groups in the function call.
SIZE_PER_GROUP is an integer array of length GROUP_COUNT,
where SIZE_PER_GROUP[i] specifies the number of matrices
in group i. Each argument from a standard BLAS call is now
an array of the same type, of length GROUP_COUNT. For exam-
ple, TRANSA is now a character array of length GROUP_COUNT,
where TRANSA[i] specifies the transpose parameter for the A

Inputs Memory layout Memory addresses:

A(1) 2 R2⇥2
(64) a(1)1,1 0xF10016

a(1)2,1 0xF10816

a(1)1,2 0xF11016

a(1)2,2 0xF11816

A(2) 2 R2⇥2
(64) a(2)1,1 0xC2A016

a(2)2,1 0xC2A816

a(2)1,2 0xC2B016

a(2)2,2 0xC2B816

// C declaration:
double *A[2] = { 0xF100, 0xC2A0 };

Figure 2.1: Example of array-of-pointers storage in 64-bit
floating-point arithmetic (8 bytes per element) for two input
2⇥ 2 matrices A(1) and A(2). Note that matrix A(1) is stored
at higher memory addresses (starting at 0xF10016) than matrix
A(2) (starting at 0xC2A016.)

matrices in group i. Similarly, M is an integer array of length
GROUP_COUNT, where M[i] specifies the rows of the C matrices
in group i. The format of the matrix data in A, B, and C is
explored in Section 2.5, and the INFO parameter is detailed in
Section 3.

The key advantage of the group-based API is that it can
handle both fixed and variable sizes in a single interface. Addi-
tionally, it is a clean representation of a common situation in
applications where one has a few groups, each of which has
many matrices.
Rationale
Explicitly providing group sizes sidesteps the drawback of
requiring the implementation to discover groups internally,
which can be cumbersome if the number of matrices is large
and the group sizes are varied. Without the knowledge of
any a priori bounds on group sizes, the implementation
might require generic bisection or clustering algorithms to
determine group sizes efficiently for all potential inputs.

The C API is a similar extension of the cblas_dgemm() API
and is shown below.

1 cblas_dgemm(LAYOUT , TRANSA , TRANSB , M, N, K,
2 ALPHA , A, LDA , B, LDB , BETA , C, LDC)
3 BBLAS_dgemm(LAYOUT , TRANSA , TRANSB , M, N, K,
4 ALPHA , A, LDA , B, LDB , BETA , C, LDC ,
5 GROUP_COUNT , SIZE_PER_GROUP , INFO)

The only exception to the rule of consistent counterparts be-
tween a type and an array of that type is that all groups and
matrices must have the same LAYOUT (i.e., all groups are stored
in row-major format or all groups are stored in column-major
format).

2.5 Memory Storage

Another major issue for defining a batched BLAS standard is the
way in which the matrices are stored in memory. The memory

4

Toward	a	standard	Batched	BLAS	API		
Error Handling
Ø  Legacy Error Reporting Methods “xerbla”

o Use of global state
o Dependence on platform-specific features
o Limited customization
o LAPACK has additional output error parameter “info”
o For batched BLAS, also a xerbla output may not indicate which

matrix had the error

Toward	a	standard	Batched	BLAS	API		
Error Handling
Ø  Legacy Error Reporting Methods “xerbla”
Ø  Does batched BLAS need checking?

o All errors reported
o Some errors reported
o No errors reported

Can be accomplished by the “info” array

Toward	a	standard	Batched	BLAS	API		
Summary
Ø  Separate API for fixed and variable size batches
Ø  Using standard storage “BLAS like”
Ø  Use array of “info” for error reporting allowing for different level of reporting
Ø  Other API’s could be considered as auxiliary API’s or API with extra features
void batchedblas_dgemm_batched (

batched_trans_t transA , batched_trans_t transB ,
batched_int_t m, batched_int_t n, batched_int_t k,
double alpha ,
double const * const * dA_array , batched_int_t ldda ,
double const * const * dB_array , batched_int_t lddb ,
double beta ,
double ** dC_array , batched_int_t lddc ,
batched_int_t batchCount , batched_queue_t queue
batched_int_t *info);

Toward	a	standard	Batched	BLAS	API		
Summary
Ø  Separate API for fixed and variable size batches
Ø  Using standard storage “BLAS like”
Ø  Use array of “info” for error reporting allowing for different level of reporting
Ø  Other API’s could be considered as auxiliary API’s or API with extra features

Reference:

Jack Dongarra, Ian Duff, Mark Gates, Azzam Haidar, Sven Hammarling, Nicholas J. Higham, Jonathon Hogg, Pedro Valero-Lara, Samuel D.
Relton, Stanimire Tomov, and Mawussi Zounon.
A proposed API for Batched Basic Linear Algebra Subprograms.
Technical Report MIMS Eprint: 2016.25, Manchester Institute for Mathematical Sciences, School of Mathematics, April 2016. The Uni- versity
of Manchester, ISSN 1749-9097.

Timothy Costa Jack Dongarra Piotr Luszczek Mawussi Zounon
Extension to Batched Basic Linear Algebra Subprograms
Internal Technical Report University of Tennessee

