Azzam Haidar

w/, A. Abdelfatah, H. Anzt, J. Dongarra, M. Gates, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki

Innovative Computing Laboratory University of Tennessee, Knoxville

Batched, Reproducible, and Reduced Precision BLAS

SC'17, Denver, CO, USA

12-17 November, 2017

Linear Algebra on small problems are needed in many applications:

- Machine learning,
- Data mining,
- High-order FEM,
- Numerical LA,
- Graph analysis,
- Neuroscience,
- Astrophysics,
- Quantum chemistry,
- Multi-physics problems,
- Signal processing, etc

Status and goal

- ➤ Batched BLAS functionalities becomes a major factor in our community
 - Batched routines gradually make their steps into vendor libraries (Intel, Nvidia, etc) as well as into research software (MAGMA, Kokkos, etc)
- ➤ Today's API differ significantly which can lead to poor portability
- ➤ Thus the community needs to make an effort to standardize the Batched BLAS API

Status and goal

- ➤ Heterogeneity in the hardware (GPU, Phi, CPU) deeply complicates efforts to provide a standard interface
 - The calling interface may affect the implementation (performance) which depend on the architecture
- Our objective today, is to try to define a crossarchitecture standard without a severe performance penalty
- Other API's could be considered as auxiliary API's or API with extra features

Matrices are stored BLAS-like "the usual storage that we know"

- o array of pointers: that consists of a pointer to each matrix
 - Data could belong to one memory allocation
- Data could be anywhere, different allocations
- Matrices could be equidistant or not from each other
- Is suitable for CPU, GPU, Phi
- Accommodate most of the cases

User has to fill-up the array of pointers

Matrices are stored BLAS like "the usual storage that we know"

- o array of pointers: that consists of a pointer to each matrix
- o strided: as one pointer to a memory and matrices are strided inside
 - Fixed stride
 - Variable stride
 - Suitable for CPU, GPU, Phi
 - o For variable stride, user has to fill-up the array
 - Cannot accommodate data that was not been allocated within the same chunk of memory. Think about adding matrices to the batch.

Matrices are stored BLAS like "the usual storage that we know"

- o array of pointers: that consists of a pointer to each matrix
- o strided: as one pointer to a memory and matrices are strided inside

Matrices are stored in interleaved fashion or compact

- o data can be interleaved by batchcount or by chunk (SIMD, AVX, Warp)
- Is only good for sizes less than 20 and only for some routines such as GEMM, TRSM, while it has performance and implementation issues for routines like LU or QR factorization
- Requires user or implementation to convert/reshuffle the memory storage since most of the storage are BLAS-like

API discussion

- > Same or separate API for fixed and variable size batches?
 - o Have two separate API's?
 - o Have a flag that switch between fixed and variable?
 - To simplify user life and avoid a combinatorial combination of parameter, we propose to distinguish between fixed and variable size APIs

```
void batchedblas_dgemm_vbatched (
          batched_trans_t transA , batched_trans_t transB ,
          batched_int_t *m, batched_int_t *n, batched_int_t *k,
          double alpha ,
          double const * const *dA_array , batched_int_t *ldda ,
          double const * const *dB_array , batched_int_t *lddb ,
          double beta ,
          double **dC_array , batched_int_t *lddc ,
          batched_int_t batchCount , batched_queue_t queue );
```

API discussion

- > Same or separate API for fixed and variable size batches?
 - o Have two separate API's?
 - o Have a flag that switch between fixed and variable?
 - To simplify user life and avoid a combinatorial combination of parameters, we propose to distinguish between fixed and variable size APIs
- ➤ Group API
 - o Is not suitable for GPU
- BBLAS_dgemm(TRANSA, TRANSB, M, N, K,
 ALPHA, A, LDA, B, LDB, BETA, C, LDC,
 GROUP_COUNT, SIZE_PER_GROUP, INFO)
 - Force the user to build groups before calling the routine then why not having different calls

Error Handling

- ➤ Legacy Error Reporting Methods "xerbla"
 - Use of global state
 - Dependence on platform-specific features
 - Limited customization
 - LAPACK has additional output error parameter "info"
 - For batched BLAS, also a xerbla output may not indicate which matrix had the error

Error Handling

- ➤ Legacy Error Reporting Methods "xerbla"
- > Does batched BLAS need checking?
 - All errors reported
 - Some errors reported
 - No errors reported

Can be accomplished by the "info" array

Summary

- Separate API for fixed and variable size batches
- Using standard storage "BLAS like"
- > Use array of "info" for error reporting allowing for different level of reporting
- Other API's could be considered as auxiliary API's or API with extra features

```
void batchedblas_dgemm_batched (
          batched_trans_t transA , batched_trans_t transB ,
          batched_int_t m, batched_int_t n, batched_int_t k,
          double alpha ,
          double const * const * dA_array , batched_int_t ldda ,
           double const * const * dB_array , batched_int_t lddb ,
           double beta ,
           double ** dC_array , batched_int_t lddc ,
           batched_int_t batchCount , batched_queue_t queue
           batched_int_t *info );
```

Summary

- Separate API for fixed and variable size batches
- Using standard storage "BLAS like"
- Use array of "info" for error reporting allowing for different level of reporting
- Other API's could be considered as auxiliary API's or API with extra features

Reference:

Jack Dongarra, Ian Duff, Mark Gates, Azzam Haidar, Sven Hammarling, Nicholas J. Higham, Jonathon Hogg, Pedro Valero-Lara, Samuel D. Relton, Stanimire Tomov, and Mawussi Zounon.

A proposed API for Batched Basic Linear Algebra Subprograms.

Technical Report MIMS Eprint: 2016.25, Manchester Institute for Mathematical Sciences, School of Mathematics, April 2016. The Uni- versity of Manchester, ISSN 1749-9097.

Timothy Costa Jack Dongarra Piotr Luszczek Mawussi Zounon

Extension to Batched Basic Linear Algebra Subprograms

Internal Technical Report University of Tennessee