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Introduction

The cell microprocessor, also known as the Cell Broadband Engine (CBE), is a Power
Architecture-based microprocessor developed for high-workload and multimedia-based
computing. The cell processor was designed by STI, a partnership among Sony, Toshiba, and
IBM, although IBM remains the key developer of the project. Built with massive floating point
operations in mind, the original processor was developed with a Power Architecture core
surrounded by eight “synergistic” processors. Although the cell processor has strong computing
potential, it is widely regarded as a challenging programming environment [1]; as a result,
interest in the processor has waned. In this paper we discuss the characteristics of the Cell
microprocessor: we start with a brief history, discuss its three principal components, introduce
its instruction set architecture, and finish with a summary of its programming challenges.

A Brief History

The IBM Cell architecture is the product of a joint engineering effort by three companies, Sony,
Toshiba and IBM. In 2001 the three companies established the STI (Sony Toshiba IBM) Design
Center in Austin, Texas to develop a new “supercomputer on a chip.” The work involved over 400
engineers and took approximately 4 years to complete [2]. This project came about at the

request of then Sony Computer Entertainment Inc. CEO Ken Kutaragi. Kutaragi was coming off

the immensely successful release of the PlayStation 2, and was looking for new technologies to

give the company a leg up over Microsoft in the next generation game console cycle. Unsatisfied
with the microprocessors available at the time, Kutaragi challenged IBM to develop a new, faster
design in time for the 2005 announcement of the PlayStation 3.

Although initially targeted at the PlayStation 3, the engineers at the STI Design Center wanted to
create an architecture that would be more general purpose. Initial reports suggest that they were

chasing the embedded market as well, with Cell proposed for things like televisions and home

theater systems — applications that require high data throughputs. These ambitious goals were

reflected in the product name they chose, the Cell Broadband Engine Architecture (CBEA),

emphasizing that it was a high bandwidth processor. Ken Kutaragi, the president and CEO of

Sony Computer Entertainment Inc., visualized the processor as a completely new way of

handling multi-core designs: he related the system to that of a biological unit, a network of “cells”

forming the building blocks of a larger system. He felt that “SCEI, IBM, and Toshiba are mapping
out the future of broadband computing” [2].

To promote development on the processor, IBM held the “Cell Broadband Engine Processor
University Challenge” in 2007, challenging university students to develop applications using the
new CBE. The first-place students used a cluster of PS3s to perform massively-parallel image
processing based on algorithms meant to model the visual processing performed by the human
brain. In their paper, they stated that they were able to “[demonstrate] the potential to support the
massive parallelism inherent in these algorithms by exploiting the CELL’s parallel instruction set
and by further extending it to low-cost clusters built using the Sony PlayStation 3 (PS3)” [3].



In 2008, IBM produced the PowerXCell 8i, which formed the backbone of the IBM Roadrunner,
the first supercomputer to break the petaflop barrier. The new design used the 65 nm process

and increased the floating-point performance of the SPEs. When it was built, it had the highest
MFLOPS/Watt ratio of any supercomputer in the world. The following year, versions of the PS3

were released with the 45 nm Cell Processor.

Despite the potential of the Cell processor, it was widely considered a difficult environment for
programmers [1]. With the development of the PS4, Sony decided to move towards an x86
architecture, an easier environment for developers. [5] Toshiba abandoned development of HD
televisions based on the Cell. Even IBM halted development of the Cell processor with 32 APUs
and the Blade server line based on the processor [6], and for the most part direct use of the cell
processor has ceased.

Overview: PPE, SPE, EIB

The Cell Broadband Engine Architecture was designed for distributed processing in a scalable
way to facilitate a family of processors with a range of available cores and memory
configurations. This allowed the Cell family to address different domains while using the same
basic hardware design [7]. A Cell BE system has:
e one or more PowerPC Processor Elements (PPEs), which handles system
management
e one or more Synergistic Processor Elements (SPEs), which perform the data-heavy,
parallel computation
one internal interrupt controller (IIC); and
one Element Interconnect Bus (EIB) for connecting units within the processor.
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Figure 1. A general diagram of the Cell processor [8].
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Figure 2. An actual die photo of the Cell processor [8].

The first-generation Cell processor had 1) a general purpose 64-bit RISC dual threaded,
dual-issue PPE with 32K L1 cache and 512K L2 cache; 2) eight SPEs; 3) an on-chip memory
controller; 4) and a controller for a configurable 1/O interface. Figure 1 shows the diagram of the
layout of Cell processor, and Figure 2 the actual die of the chip [8].

Performance Metrics

Metric Performance

SPE to SPE Bandwidth 78 — 180 Gb/s

Memory Read/Write 21 Gb/s

I/0 Interface 25 (inbound) — 35 Gb/s (outbound)
Optimized Matrix-Matrix Multiple 201 GFLOPs

LINPACK Optimized 155.5 GFLOPs

Single SPU MPEG2 decode 77 frames of HDTV

AES Cryptography on SPE 2.0 Gb/sec

Table 1. Performance Metrics of the Cell Broadband Engine [9].
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Figure 3. Diagram of the major units of a PPE [8].

The PPE (Figure 3) is a 64-bit (including all effective addresses, general registers and most
special purpose registers) “Power-Architecture compliant core optimized for high frequency and
power efficiency” [8]. It can run in either 64-bit or 32-bit mode with the same instruction set which
controls operations such as interpretation of the effective address, setting of status bits, and
branch-testing on the count register. When computing the effective address, all 64 bits of the
general registers are used to produce a 64-bit result. However, only in 64-bit mode the entire
result (64-bit) will be used to access data. On the other hand, only the lower 32-bit of the result
will be used in 32-bit mode to access data and fetch instructions [7]. Specifically, the PPE has
three units (Figure 3):

1. The instruction unit (IU) handles instruction fetch, decode, branch, issue, and completion;

2. The fixed point execution unit (XU) handles all fixed point instructions and all
load/store-type instructions. It consists of a 32 by 64-bit general-purpose register file per
thread, a load/store unit (LSU), a fixed-point execution unit, and a branch execution unit.
The LSU consists of the L1 D-cache, a translation cache, an eight-entry miss queue, and
a 16-entry store queue;

3. A vector scalar unit (VSU) handles all vector (through the vector multimedia extensions
(VMX) unit) and floating-point (through the floating-point unit (FPU)) instructions. It
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consists of a 32 by 64-bit register file per thread, as well as a ten-stage double-precision
pipeline. The VMX contains four subunits: simple, complex, permute, and single-precision
floating point, and a 32 by 128-bit vector register file per thread. All VMX instructions are
128-bit SIMD with varying element widths of 2 x 64-bit, 4 x 32-bit, 8 x 16-bit, 16 x 8-bit, and

128 x 1 -bit.
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Figure 4. Structure of the pipeline of a PPE [8].

Comparing to other multi-issue out-of-order processors, the pipeline structure of the PPE is

relatively simple with only 23 pipeline stages (Figure 4), partially due to the “short-wire” design
which limits the amount of communication delay in every cycle [8]. There are six instruction fetch
and cache/buffer stages. These fetch four instructions per cycle per thread into an instruction

buffer from which they are issued in order (but interleaved). The IU uses a 4-KB by 2-bit branch
history table with 6 bits of global history per thread to predict branching. There are six
decodel/issue stages that process the decoding and dependency checking before dual-issuing
instructions to an execution unit. Most instruction combinations can be dual-issued, but there are
a few exceptions in the case of resource conflicts: “simple vector, complex vector, vector

floating-point, and scalar floating-point arithmetic can not be dual-issued with the same type of
instructions” [8]. Despite this, it is possible to dual-issue these instructions “with any other form

of load/store, fixed-point branch, or vector-permute instruction” [8].

After entering the back end of the pipeline, in XU the longest operation (Load/Store) takes two
register file access stages, eight execution stages and one final write back stage (Figure 4).
Other, shorter back end operations such as branch and fixed-point unit operations are stuffed
with delayed-execution stages (which are a means to provide some benefits of out-of-order
execution to avoid stalls at issue stages). This allows all of them to complete and forward their
results in two cycles. A vector-scalar unit (VSU) allows vector and floating-point instructions to
be issued to separate pipelines, thus allowing them to be issued out of order with respect to one
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another [8].

As shown above, the PPE is designed as a dual-issue processor with in-order issue. Two

simultaneous threads of execution are provided by the PPE; these interleaved instructions allow
the PPE to maximize its use of instruction slots, increase efficiency, and reduce pipeline depth
[8]. By duplicating all architected states (including all architected registers and most of
special-purpose registers), the programmer can view the processor as a “two-way

multiprocessor with shared data flow” [8]. Caches and queues are usually shared for both
threads [8].

The PPE’s cache hierarchy consists of two L1 32-KB caches (one for instructions, one for data),

along with a 512-KB unified (instruction and data) L2 cache. The L1 instruction cache is
organized as a two-way associative memory with 512 wordlines that access 32 bytes per way. It
is SRAM based and clocked at the full clock rate with a three-cycle read latency. These cycles
are spent generating the address; accessing the array; and parity checking, data formatting, and
way selecting [9]. Writes are performed one cache line at a time in 32-byte wordlines, but they
may be 64 bytes wide (in which case two consecutive wordlines are addressed) [9].

The L2 cache is clocked at only half the rate and includes the L1 data cache. It's built with eight
SRAM macros and organized as a 512-KB eight-way associative memory. It can only perform
one read or write per cycle, though writes complete in two cycles and reads complete in either
three or four depending on the size (140-bit or 280-bit). It supports write-back and allocation on
store miss, along with “ECC on data, parity on directory tags, and global and dynamic power
management” [9]. In particular, due to its organization, only & of the L2 cache need be activated
during a read or write, since the way selected is decoded before accessing the array. Thus, the
L2 has high power conservation while still allowing reads and writes to be interleaved, provide
continuous data transfers to and from the L2 [9].
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Figure 5. Diagram of the major units of an SPE [8].

The SPEs (Figure 5) are dual-issue SIMD RISC cores with all instructions encoded in 32-bit
fixed-length instruction formats. It consists of three main units:

1. the synergistic processor unit (SPU), which possesses a 128 by 128-bit SIMD register
file used by both floating-point and integer instructions. This “facilitates efficient
instruction scheduling and [...] enables important optimization such as loop unrolling”
[10];

2. the local store (LS), a special block of memory local to an individual SPE. It's arranged as
a 256 KB non-cached memory and is the largest component in the SPE. It stores both
instructions and data used by the SPU [8];

3. the memory interface controller (MFC), which facilitates the communication between the
SPU/LS and the main memory and other processors in the Cell. MFC commands are
issued by the SPUs or the PPEs and carried out by the direct memory access (DMA)
controller, which actually moves the data.

The SPUs have a focus on vector-based data. They are meant to perform the computationally
heavy (and hopefully parallel) instructions for any particular program. All the instructions for the
SPU are SIMD and use the 128-bit data as 2 x 64-bit double precision, 4 x 32-bit single precision,
8 x 16-bit integers, 16 x 8-bit integers and of course 128 x 1-bit [8,10]. By using the LS, many
memory transactions can be in-process without requiring “deep speculation that drives high
degrees of inefficiency on other processors” [10]. This significantly decreases the overhead for
memory access, but puts the burden of data access on the programmer and compiler, who

must determine data prefetches at compile-time.

Access to the LS outside of its SPE is managed by the MFC via a DMA controller. Each SPE
can use its MFC to issue up to 16 asynchronous, coherent DMA commands to transfer data



and instructions between the LS and system memory. The PPE and SPEs share the same
translation protocol and protections (via the page and segment tables), so the OS can manage
the system memory across the SPEs easily. The LS has two read/write ports which supports
128-bit wide DMA transfers, and a single command can transfer up to 16 KB of sequential data
[10]. Transfer requests are tagged (in software) with information about the storage type being
accessed. They are then queued in the MFC so that the EIB can efficiently prioritize transfers.
Since this access is only available every eight cycles, a given DMA transfer takes 16 cycles to
put all data on the EIB. The extra clock cycles are left for data load/store and instruction prefetch
[10]. The SPU prioritizes access to the LS as: DMA transfers, data load/store, and instruction
pretech.

Contention for memory resources is of course an issue with such a highly parallel structure, and
the MFC naturally has several ways of managing this issue. This includes a multisource
synchronization via atomic memory updates; however, these require constant polling of the
memory location by the SPU, which is inefficient. As a result, a more typical locking mechanism
involves setting a reservation on the memory location of the lock. A program can then request an
SPU event or interrupt when the memory “reservation” is lost (i.e., another processor modifies
the lock [10]). Although this does not guarantee a lock value has changed, it does allow the SPU
to only check the lock value when it has changed. This method can be inefficient when there is
high contention for a lock [10].

The SPU has other mechanism for synchronization and message passing. Perhaps most
interesting among them is the mailbox facility. The mailbox is designed to assist in
process-to-process communication and synchronization by providing “a simple, unidirectional
communication mechanism typically used by the PPE to send short commands to the SPE and
to receive status in return” [10]. There are three mailboxes: inbound, outbound, and outbound
interrupt, and each are able to hold one or more entries. The SPU uses channel instructions to
read the inbound mailbox or send to the outbound mailbox. These instructions block if the
inbound mailbox is empty or outbound mailbox is full. Writing to the outbound box causes an
interrupt that is routed to the PPE for processing [10]. The typical use-case involves the PPE
issuing commands to the SPU. The SPU carries out the commands and issues a response to
the PPE before reading the next instruction in the mailbox.
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Figure 6 shows the basic structure of the SPE pipeline. Two instructions can be issued each

cycle for the SPE -- one for fixed- and floating-point operations and the other for load/stores. The
load/store operation cycle can also be used for byte permutation and branching [8]. Most
instructions are fully pipelined, but fixed-point instructions take two cycles, and single-precision
FP and load instructions take six [8]. The programmer "hints" at branches to notify hardware of
an upcoming branch address and target to allow pre-fetching to limit stalls.

As mentioned above most of the instructions operate on 128-bit wide data. The SPE core can

perform single precision floating point operations, integer arithmetic, boolean logic (including

branching and comparisons), loads, and stores. Up to 32 instructions are buffered, and the SPE
uses an “Even/Odd Pipe” to determine scheduling; two instructions are retrieved from the buffer

and checked for dependences. If possible, they are executed in parallel; otherwise, they are

issued in-order. The SPU only access its LS and register file and has no scalar unit.
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Figure 7. Cell Diagram with Unit ID [9].

The Element Interconnect Bus (EIB) connects the PPE(s), SPE(s), and off-chip memory

controllers and 1/0O devices. The EIB has a token ring-like layout, with four 16 byte wide data
rings, two running clockwise, and two running counter-clockwise. The processing elements

each have one on-ramp and one off-ramp to the bus, enabling simultaneous send/receives.
Each message can be up to 8 cycles long, or 128 bytes (the length of a single PPE cache line).

The interconnected units use DMA commands to send data to each other along the bus, with up
to three messages able to be transmitted at a time, as long as they don’t overlap. [9]

A processor element wishing to use the data ring must request access from the EIB’s data ring
arbiter. In order to reduce memory related stalls, the arbiter gives the highest priority to DMA
requests from memory controllers and treats all other requests as equal. The requester can use
any of the four data rings. Which one it gets assigned to is decided by the arbiter. Once the
arbiter decides that a requester can send data over the ring, it gives that requester a token. Once
the requester has sent its data and the receiver has received it, the token is returned to the
arbiter to be re-used.[9]
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Data transfer latencies depend on the distance from, or number of hops, from the sender to the
receiver. Clearly, transfers to adjacent units are fastest, and the farther around the ring a
message has to go, the longer it takes [11]. The arbiter will not force transfers more than half

way across the ring, instead it will wait until the shorter path (going in the opposite direction) is
available. [9]
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Instruction Set Architecture

The PPE instruction set (PPEIS) is designed as a superset of the PowerPC Architecture
instruction set (with a few additions and changes), which adds new vector/SIMD multimedia
extensions (VSME) and their associated C/C++ intrinsics [11]. The length of instructions in
PPEIS is 4 bytes and most PPEIS instructions can have up to three operands with two source
operands and one destination operand. The PPEIS instructions can be categorized in three
types [9]:

1. computational, which include fixed-point instructions operating on byte, halfword, word,
and double word (e.g. arithmetic, compare, logical, and rotate/shift) and floating-Point
Instructions operating on single-precision and double precision floating-points (e.g.
floating-point arithmetic, multiply-add, compare, and move);

2. load/store, which include both fixed-point and floating-point load/store instructions. The
fixed-point loads and stores support byte, halfword, word, and doubleword operand
accesses between storage and the 32 general purpose registers (GPRs). The floating
point loads and stores support word and doubleword operand accesses between storage
and the 32 floating-point registers (FPRs);

3. system management/control, like memory synchronization, memory flow and processor
control, and memory/cache control.

It also has a unique set of commands for managing DMA transfer, external events,
interprocessor messaging, and other functions. The SPEIS draws a similarity between itself and
the PPE VSME because they both operate on SIMD vectors. But under the hood they are quite
different instruction sets which need different compilers for processing programs designated to
PPE and SPEs [11].

Unit Instructions Execution pipe Depth Latency
Simple fixed =~ Word arithmetic, logicals Even 2 2
Simple fixed  Shifts/rotates Even 3 4
Single precision MAC Even 6 6
Single precision Int MAC Even 7 7
Byte Byte avg,sum, pop count Even 3 4
Permute QW shift/rotates Odd 3 4
Local storage  Load and store Odd 6 6
Channel Channel read and write Odd 5 6
Branch Branches 0Odd 3 1-18

Table 2. Overview of the SPEIS and its associated pipelines and functional units [9].
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In Table 2 is a description of the SPE instructions and their associated pipelines and functional
units. Like PPE, SPEs are multi-issue in-order processors which means they issue and
complete all instructions in program order and do not reorder or rename their instructions. The
SPE features a dual-issue odd-even pipeline (as mentioned in previous section) and has nine
execution units lined up to service the dual issue pipeline. Even though out-of-order issue is not
supported within the hardware, SPE does allow the compiler to reorder the instruction sequence
in order to achieve high dual-issue efficiency, as long as the compile maintains the correct
program behavior [9].

Detailed descriptions about the even and old-issued instructions and their associated pipeline
characteristics are given in Table 3 and Table 4. If two consecutive instructions have different
parities (represented by even or odd addresses) which match the parities of the pipelines, the
SPE Instruction pair can be dual-issued. Otherwise, a single-issue will be performed without
“no-op padding”, which results in the instructions executing in-order. This instruction issue
mechanism simplifies resource and dependency checking [9].

Even Pipeline Latency Stalls
Single-precision floating-point 6 0
Integer multiplies, spu_convtf, spu_convts, fi

Immediate loads, logical operations, integer add/sub, select bits
Double-precision floating-point

Element rotates and shifts

Byte operations (pop count, abs. diff., avg, sum)

S SO I R
oo oo

Table 3. Detailed description of the even-issued pipeline [9].

Odd Pipeline Latency Stalls
Shuffle bytes, quadword rotates/shifts 4 0

Gather, mask, generate insertion control il 0
Estimate 4 0
Loads 6 0
Branches 4 0
Channel operations, SPRs 6 0

Table 4. Detailed description of the odd-issued pipeline [9].
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Programming Challenges

The Cell architecture has developed a reputation of being difficult to program. This is at least
partially due to the difficulty in writing concurrent software in general. This is really the case for all
modern processors and GPUs. However, due to the limited power of the Cell PPE, the
architecture demands efficient distribution of computations among all SPEs in order to get good
performance. In 2005, most application programmers were still writing single threaded,
sequential code.

Aside from that, there were some difficulties particular to Cell. One issue is that the processor
most commonly seen (the one shipped in the PlayStation 3) had only 256k of local storage for
both instructions and data dedicated to each SPE. This is a fairly small amount of room to work
with, so problems need to be decomposed into chunks small enough to fit. Moreover, moving
data in and out of the local storage areas from main memory had to be done manually by the
programmer, unlike a cache for example, where the contents are managed by the machine.
Management of this memory is crucial since code running on any given SPE only has immediate
access to data sitting in that SPE’s local storage.

The PPE was fairly easy to work with. It resembled the standard desktop microprocessors that
developers were used to. The SPEs, on the other hand, were more difficult. The lack of caches,
purely in-order execution, and lack of branch prediction made it difficult to write fast code in the
conventional manner. Everything had to be managed by the programmer, with little help provided
by the processor itself. Ideally you wanted each SPE running simple, sequential code that did
simple operations on large vectors of numbers. Too much logic meant a lot of time stalled in
missed branches. Too many pointers to non-contiguous chunks of memory meant time lost
doing DMA into and out of the local storage. Unfortunately, not all programs can be broken down
into simple, parallel sets of vector operations. For those that couldn’t, execution would generally
happen mostly on the (underpowered for its time) PPE.

Developers also had to do a lot of work that they had traditionally relied on the compiler to do for
them. Loop unrolling and function inlining, for example, had to be done manually. This could have
a large impact on execution time since larger basic blocks were easier for the compiler to
schedule. Unfortunately, this also made it harder to manage the limited amount of storage space
that had to hold both the code and the data. Similarly, larger blocks of data were more efficient to
transfer in and out of local storage, but they couldn’t be too large to fit in what was left of the
SPE’s 256k. In order to take advantage of the SPE dual pipelines, the programmer would have to
ensure that his code was free of hazards since conflicting instructions would cause an entire
pipeline to stall.

The Cell processor confronted programmers with all the “new” problems of writing concurrent
software, as well as a set of hardware constraints that made dealing with these problems even
more difficult. On top of that, the new, smaller units of code that were to be run on the system’s
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SPEs had to be written in a far more direct, manual way than most developers were used to. A
lot of the help programmers have traditionally gotten from both the hardware and tools (caches,
dynamic scheduling, compiler optimizations, reasonably feature rich debuggers) was also

unavailable to them. Altogether, this caused a lot of the early bad press Cell got and helped
shaped its reputation.
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