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Motivation

We are looking for a factorization-based preconditioner suchthat A ~ L - U .
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).

Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?
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We are looking for a factorization-based preconditioner suchthatA~ L - U .

is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A) ). o
X X
X
*  Where should these nonzero elements be located? x X X X
* How can we compute the preconditioner in a highly parallel fashion? x X = »

Exact LU Factorization

. Decompose system matrix into product A = L - U.

. Based on Gaussian elimination.
. Triangular solves to solve a system Ax = b:

Ly=b=y = Ur=y==x

. De-Facto standard for solving dense problems.
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We are looking for a factorization-based preconditioner suchthatA~ L - U .

is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A) ). o
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*  Where should these nonzero elements be located? x X X X
* How can we compute the preconditioner in a highly parallel fashion? x X = »

Exact LU Factorization

. Decompose system matrix into product A = L - U.
. Based on Gaussian elimination.
. Triangular solves to solve a system Ax = b:

Ly=b=y = Ur=y==x

. De-Facto standard for solving dense problems.
. What about sparse? Often significant fill-in...
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Motivation A\‘(IT

Karlsruhe Institute of Technology

We are looking for a factorization-based preconditioner suchthatA~ L - U .

is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A) ). o
X X
X
* Where should these nonzero elements be located? o x X
* How can we compute the preconditioner in a highly parallel fashion? x X = %
Exact LU Factorization Incomplete LU Factorization (ILU)
. Decompose system matrix into product A = L - U. * Focused on restricting fill-into a
. Based on Gaussian elimination. specific sparsity patternS.
. Triangular solves to solve a system Ax = b: L € R™™ |ower {unit-) triangular, sparse.
Ly=0= = Ur=y==
Y Y Y U € R™ ™ upper triangular, sparse.

. De-Facto standard for solving dense problems. .

§ Gense prow’ Lij =Us; =0V(i,j) € S.
. What about sparse? Often significant fill-in... o

R=L-U, R;; =0V(i,j) €.
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We are looking for a factorization-based preconditioner suchthatA~ L - U .

is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A) ). o
X X
X
* Where should these nonzero elements be located? o x X
* How can we compute the preconditioner in a highly parallel fashion? x X = %
Exact LU Factorization Incomplete LU Factorization (ILU)

. Decompose system matrix into product A = L - U. Focused on restricting fill-into a
. Based on Gaussian elimination. specific sparsity patternsS.
. Triangular solves to solve a system Ax = b:

Ly=b=y s Uz =y =z For ILU(0), S is the sparsity pattern of A.

*  Works well for many problems.

. De-Facto standard for solving dense problems.
. What about sparse? Often significant fill-in...
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We are looking for a factorization-based preconditioner suchthatA~ L - U .

is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A) ). o
X X
X
*  Where should these nonzero elements be located? x X X X
* How can we compute the preconditioner in a highly parallel fashion? x X = »

Exact LU Factorization

05/07/2018

Decompose system matrix into product A = L - U.
Based on Gaussian elimination.
Triangular solves to solve a system Ax = b:

Ly=b=y = Ur=y==x

De-Facto standard for solving dense problems.
What about sparse? Often significant fill-in...
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Incomplete LU Factorization (ILU)

* Focused on restricting fill-into a
specific sparsity patternsS.

For ILU(0), S is the sparsity pattern of A.
*  Works well for many problems.

* Fill-ininthreshold ILU (ILUT) bases S on the
significance of elements (e.g. magnitude).
* Often better preconditioners than
level-based ILU.
* Difficult to parallelize.
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Motivation A\‘(IT

Karlsruhe Institute of Technology

We are looking for a factorization-based preconditioner suchthatA~ L - U .

is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A) ). o
X X
X
*  Where should these nonzero elements be located? x X X X
* How can we compute the preconditioner in a highly parallel fashion? x X = »

Rethink the overallstrategy!

* Use a parallel iterative process to generate factors.

e The preconditioner should have a moderate number of nonzero elements,

(

\_

A L N R

\

Select a set of nonzero locations.
Compute values in those locations such that A ~ L - U is a “good” approximation.

Maybe change some locations in favor of locations that result in a better preconditioner.

Repeat until the preconditioner quality stagnates.

/
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Considerations A\‘(IT
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[ 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. )

* This isan optimization problem...

* *x * % * * * *x K % *
* k% * X * % * % * X
* k% * Xk % *
* * I * x *
* *  x * * * %
* % * X * % * % *
ILU residual R = A - L X U
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[ 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. )

* This isan optimization problem...

—
* K Kk * * * * x * |* *
ST * % [ [~ = * ok S—
* K ok * x ok *
* * I * x *
* *  x * * *  x
*  x *  x *  x *  x *
-
* KX Kk K *
*****
* x K
* *
* *  x
*  x *
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Karlsruhe Institute of Technology

[ 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. )

* This isan optimization problem...

—
* ok Kk K * * * x ok |x *
* Kk x *  x * * S
* K ok [+~ ~ = | *
* * * * *
* *  x * * * ok
*  x *  x * * *
-
* ok Kk x *
* ok kA Kk K
***
* *
* * ok

*
*
*
*
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Considerations A\‘(IT
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[ 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. )

* This isan optimization problem...

x * Kk K * * x K Kk K *
x *x % x * * % * % x %
x Kk x Kk ok *
* * I * x *
* *x * * * x %
*x * x * * % * % *
X * Kk * *
x Kk x Kk x %
x * Kk Kk x *x
x K Kk K *
*  * N
X Kk K ok x %
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Considerations A\‘(IT
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[ 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. )

* This isan optimization problem...

x Kk x K * * x Kk x K *
x o, x NE— * ok * * x ok
x ok x * * * *
* * I * x *
* x * * * x %
Residual: *ox *ox *ox *ox *
* ok x K * x ok X K * x ok X K *
* x Kk Kk K * * x * * *x x ok x Kk K K
* ok x kK K ol xox x Kk x Kk x *
X x k * * B * N * K ok * *
NE— NE—. * NE— * NE—
* x Kk Kk x * NE— NE— X Kk X K K *
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[ 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. )

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* x ok * * * * x Kk * *
* x K * NE— NE— N
* x ok * x x *
* * I * x *
* * * * N
* * * *  * NE— *
* K kK * * x Kk * * * x x Kk * *
* Kk Kk Kk K * * K % *  * * % * % * % SparsitypatternS
* x Kk Kk K * ol x o+ % * x * *
X x k * * N * | * * x *
* * N * * * * Nu—
* x Kk Kk x * * *x NE— N * * *
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Considerations A\‘(IT

Karlsruhe Institute of Technology

[ 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. )

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!
nnz(L + U)equations
nnz(L + U) variables

S * * Kk Kk ok * * * Kk Kk ok *
* Kk Kk Kk K X * K x *  * * % * % * % Sparsity pattern S
* Kk Kk K* K * IR * Kk % *
* KX ok K * I * e * x *
S S * S * * S
* ok K K* Kk x * % S * ok * ok *
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Considerations

[ 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. )

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

* This isthe underlying idea of Edmond Chow’s parallel ILU algorithm?:

1—1

L-U=Als = F(lij,uij) = {ujj (a” k=1 tikUkj | ; Z ]
Qij = D p=1 likUkj, i<

AT

Karlsruhe Institute of Technology

1Chow and Patel. “Fine-grained Parallel Incomplete LU Factorization”. /n:SIAM J. on Sci. Comp. (2015).
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[ 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. )

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

* This isthe underlying idea of Edmond Chow’s parallel ILU algorithm?:
1 j—1 S
oo\ Qi — ik ) , 7>
L-U = A|S = F(lija uij) — {ujj ( J k=1 Ytk Wkj ]

i—1 o
@ij — D p—q likUkj, 1<)

Converges in the asymptotic sense towards incomplete factors L, U
suchthat R=A—-L-U =0|s

1Chow and Patel. “Fine-grained Parallel Incomplete LU Factorization”. /n:SIAM J. on Sci. Comp. (2015).
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Considerations A\‘(IT

Karlsruhe Institute of Technology
( 1. Selecta set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. j

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

* This isthe underlying idea of Edmond Chow’s parallel ILU algorithm?:

1 ( j—1 S
—— (aij — D 31— Zikukz') P>
L-U= A|S = F(lij, uij) = {u” J i k=1 J)7
@ij — D p—q likUkj, 1<)
Fixed-point sweep
* We may not need high accuracy here, approximates
because we may change the pattern again... incompleteifactors.
* One single fixed-point sweep. !Chow and Patel. “Fine-grained Parallel Incomplete LU Factorization”. In: SIAMJ. on Sci. Comp. (2015).
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Considerations

19

f 1. Selecta set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* Comparing sparsity patterns extremely difficult.

* Maybe use the ILU residual as convergence check.

* ok K * * x ok X * * *

* Kk X Kk K K x ok x NE— * ok

* x Kk Kk K * ol x o+ % * x *

* KX ok K * I * I * x
NE— NE— * NE— * *

* kX Kk K K NE— NE— * ok * *
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Compute ILU

residual & check
convergence.

Fixed-point sweep

approximates
incomplete factors.

AT
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Karlsruhe Institute of Technoloav
[ 1. Select a set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of

; : iy Compute ILU
locations that result in a better preconditioner. res%rzglu&echeck
\4. Repeat until the preconditioner quality stagnates. ) convergence.

* The sparsity pattern of A might be a good initial start for nonzero locations.

Fixed-point sweep

approximates
incomplete factors.
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f 1. Selecta set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

Identify locations
with nonzero ILU
residual.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU
residual & check ©
convergence. 4

\4. Repeat until the preconditioner quality stagnates. )

* The sparsity pattern of A might be a good initial start for nonzero locations. 9%

* Then, the approximation will be exact for all locationsSy = S(Lq + Up) ° s
and nonzero inlocations S; = (S(A) U S(Lo - Uy)) \ S(Lo + Up)*.

*x Kk Xk K * * *x ok Kk K * *x ok Kk K *
* k% *x ok *x ok *x ok *x kX kX kK Xk X
* kK x  x * | oxox Fixed-point sweep
* * * Kok KK * approximates

* *  x * x *x * X incomplete factors.
* Kk *x ok *x ok *x kK Kk ok Kk %k
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1Saad. “Iterative Methods for Sparse Linear Systems, 2™ Edition”. (2003).
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[ 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

Identify locations
with nonzero ILU
residual.

3. Maybe change some locations in favor of

. , o C te ILU
locations that result in a better preconditioner. Sl

residual & check ©
convergence. g

k4' Repeat until the preconditioner quality stagnates. )

* The sparsity pattern of A might be a good initial start for nonzero locations. 9%

* Then, the approximation will be exact for all locationsSy = S(Lq + Up) ° .
and nonzero inlocations S; = (S(A) U S(Lg - Uy)) \ S(Lo + Up)*.

* Adding all these locations (level-fill!) might be good idea...

Add locations to
sparsity pattern of
incomplete factors.

o
* ok Kk K * * * % * B
*  x % * ok * ok *  x * @ &,
PCORTH
e N . Fixed-point sweep st
* * e * * approximates T,
* o xox * incomplete factors. 23 8,
*  x * * * x * i
R A
*s.
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Considerations ﬂ(IT
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[ 1. Selecta setof nonzero locations. \
2. Compute values in those locations such that wﬁ?‘t:grlzgf;'mj
A~ L -U isa “good” approximation. residual.
3. Maybe change some locations in favor of . o
5 . or o ompute
locations that result in a better preconditioner. residu; & check o
k4' Repeat until the preconditioner quality stagnates. ) convergence. "% .
* The sparsity pattern of A might be a good initial start for nonzero locations. "%
* Then, the approximation will be exact for all locationsSy = S(Lq + Up) o
and nonzero inlocations S; = (S(A4) U S(Lg-Up)) \ S(Lo + Up)t.

. . . . . _ Add locations to
* Adding all these locations (level-fill!) might be good idea, but adding these sparsity pattern of

will again generate new nonzero residuals S = (S(A4) U S(L1-Uy)) \ S(L1+ Uy) incomplete factors.

i
* Kk x * * * ok x K * N T B
* % * % * % *x Kk ok Kk % *x Kk ok kX X %k .. '@:._
BCORTH
xox N R % xoxxx | x x K Fixed-point sweep g,
— 370) .
* *x kK kK * * *x Kk ok Kk k%K apprOXimateS ""---C:):é)'-
o xox xox x xox OO G G incomplete factors. ’%%Q
* * %k *x Kk kK kK x % * *x Kk ok kK X %k ‘@:..
cese @ee
i,
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Considerations ﬂ(IT
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[ 1. Selecta set of nonzero locations. \
. . Identify locations
2. Compute values in those locations such that with nonzero ILU
A~ L -U isa “good” approximation. residual.
3. Maybe change some locations in favor of
. . ope Compute ILU
locations that result in a better preconditioner. residual & check o
\ 4. Repeatuntil the preconditioner quality stagnates. convergence. "% i
© OOOO
* At some point we should remove some locations again, e.g. the smallest elements, "%

and start over looking at locations R = A — Ly - Uy, ...

Add locations to
sparsity pattern of
incomplete factors.

Remove smallest
elements from

incomplete factors.

Fixed-point sweep

@,8@5*-, Select a threshold .
Ot approximates Fee s,

separating smallest

elements. incomplete factors.
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ParlLUT
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Identify locations
with nonzero ILU
= [VEIR

Interleaving fixed-point sweeps approximating values
with pattern-changing symbolic routines.

Fixed-point sweep Compute ILU
approximates residual & check ©
incomplete factors. convergence. g
&
OOO

ParlLUT cycle o

Add locations to
sparsity pattern of
incomplete factors.

Remove smallest
elements from
incomplete factors.

25
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E(:?.:.
® '-. .:.C:)C:)'..
g :“:@@:...
'@(;@:':._ ":.(:)g(;':._
? . Select a threshold Fixed-point sweep o,
®: s A : e
... %@ separating smallest approximates e,
i j;.@ elements. incomplete factors. @?@%’@
..2:.:&5. ..2:@52@:.

Steinbuch Centre for Computing



ParILUT : Parallelism inside the blocks

26

Interleaving fixed-point sweeps approximating values
with pattern-changing symbolic routines.

Parallelism inside the building blocks.
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Parallelism inside the blocks: Fixed-point sweeps ﬂ(IT

Karlsruhe Institute of Technology

Fixed-point sweep Compute ILU
approximates residual & check
incomplete factors. convergence.

Fixed-point sweeps approximate valuesin ILU factors and residual®:

1
* Inherently parallel operation. F(lij, ug;) = ujj
* Elements can be updated asynchronously. aij —

- We can expect 100% parallel efficiency if bilinear fixed-point iteration can be parallelized by elements

number of cores < number of elements

* Residual norm is a global reduction.

(L] ] ] ] | o

[8][1Jo]2[3]s][2][3]2]7]o0o][n]o]2]

|u\-z|m\s|u\w|z\7|z\3\2\7\0}11\n|z|

\ T \ [ofs[s[7[2[s]2]7]o[n]o]2]

%Bo 13[13[0[e[a]7]2][-a]2]7]0[no]2]
I

1]20[13[13[ 0o [a][7][2[-s]2[7[0[no]2]

>

=

1Chow and Patel. “Fine-grained Parallel Incomplete LU Factorization”. In: SIAM J. on Sci. Comp. (2015).
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Parallelism inside the blocks: Candidate search A\‘(IT

Karlsruhe Institute of Technoloay

Identify locations

with nonzero ILU
residual.

Identify locations that are symbolically nonzero: S*=(S(A) U S(L-U)) \S(L+U)

* Combination of sparse matrix product and l

: sparse matrix product
sparse matrix sums.

e Building blocks available in SparseBLAS. sparse matrix sum
* Blocks can be combined into one kernel for ( |

higher (memory) efficiency. |
* Kernel can be parallelized by rows. sparse matrix sum

e Cost heavily dependent on sparsity pattern.

* Kernel performance bound by memory bandwidth.
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Parallelism inside the blocks: Selecting thresholds

A threshold separating the smallest elements is needed
for removing insignificant locations and keeping sparsity.

» Standard approach: sort / selection algorithms
* High computational cost
* Memory-intensive
 Hardto parallelize

e Thresholds do not need to be exact:
* |naccurate thresholds resultin a few additional / less elements.
 We can use sampling to get reasonable approximations.
* Multiple sampling-based selection runs allow to generate
thresholds of reasonable quality in parallel.

e s this appropriate for many-core architectures
with 5K threads executing simultaneously?

29 05/07/2018 Hartwig Anzt: ParILUT — A new parallel threshold ILU
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Select a threshold
separating smallest

elements.
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Threshold selection on parallel architectures ﬂ(IT

Karlsruhe Institute of Technology

Selection algorithms traditionally based on re-arranging elements in memory.

* SelectionSort (O (n?) comparisons, O(n) element swaps) B A UnliEs ol
. . separating smallest

* QuickSelect (averageO(n) comparisons,O(n) element swaps)

*  Floyd-Rivest algorithm (n + min(k,n — k) + O(v/n))

 IntroSelect (worst caseO(n) comparisons, O(n) element swaps)

elements.

Machine balance (# flops per read)

100}

: ‘ * Compute power (#FLOPs) grows much faster than
firres

@,@] memory band\{vldth. | | | N
" padCorezbude . * Data-rearranging selection algorithms become inefficient.

10}
“Operations are free, memory access is what counts.”

Peak Mflops / MWps

64bit read, / >

1FLOP 1975 1980 1985 1990 1995 2000 2005 2010 2015
year

John D. McCaplin (TACC)
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Threshold selection on parallel architectures: StreamSelect A\‘(IT

Karlsruhe Institute of Technology

Rethink the overall strategy!

* Primary goal: reduce the memory traffic. 80 Multiprocessors, each with 64 FP32 cores
e Account for high core counts, each having a set of registers. [oversubscribe with threads to hide latency]
* Assume “nice” distribution of values ( ~uniform ).

* Accept some inaccuracy in the generated threshold (approximation).

n. Find the largest and smallest elements to get the data range. \
2. Generate a fine grid of thresholds, distribute them to the cores.
3. Stream all data one single time.

4. Each core handles a set of thresholds and counts how many
elements are larger/smaller.

5. Select the threshold with the element count closest to the

K target value. j
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Threshold selection on parallel architectures: StreamSelect

Rethink the overall strategy!

32

Primary goal: reduce the memory traffic.

Account for high core counts, each having a set of registers.
Assume “nice” distribution of values ( ~uniform ).

Accept some inaccuracy in the generated threshold (approximation).

(1

2.

Find the largest and smallest elements to get the data range. \

Generate a fine grid of thresholds, distribute them to the cores.

Stream all data one single time.

Each core handles a set of thresholds and counts how many
elements are larger/smaller.

Select the threshold with the element count closest to the
target value.

J
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Karlsruhe Institute of Technology

80 Multiprocessors, each with 64 FP32 cores
[oversubscribe with threads to hide latency]

Run 5120 threads (bind to cores) each a few thresholds:

40 !
= -Linear
O StreamSelect .
30+ -7
() -7
S -7
E 20 e
o _ -
1 B -~
0 .27 oo°°oOo°°°°
- QQOOOOO
0 5 10 15 20 25 30 35

Thresholds per thread

32 thresholds gives mesh granularity of 6.1035e-06
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Threshold selection on parallel architectures: StreamSelect A\‘(IT

Karlsruhe Institute of Technology

R
* Set size m, subset size n* * Runtime increases linear with set size.
* For uniform distribution: quality ~ mesh granularity. * Runtime independent of subset size.
100 e 10
f ~O-(n-n*) /m| . 5
: 0 At -
5§ | e e
- = r A 4
© 445 | = , ,
'S 10 c A
> WM | n::, : A A ]
D I | 10'22— A A E
z A ]
A A
I A
10_103‘ BV 5 6 L 8 10_43 RV ‘5 | “6‘ B 8
10 10 10 10 10 10 10 10 10 10 10 10
Subset size n* Set size m
UJ T T T T T T
0 5 10 15 20 25 30 35

Thresholds per thread

32 thresholds gives mesh granularity of 6.1035e-06
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Is this a future-oriented algorithm?

34

Interleaving fixed-point sweeps approximating values

with pattern-changing symbolic routines.
Parallelism inside the building blocks.

05/07/2018
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Is this a future-oriented algorithm?

Interleaving fixed-point sweeps approximating values
with pattern-changing symbolic routines.

Parallelism inside the building blocks.

Fixexl-poini «yv2ep
cEEradnines
INCLAAD €12 fa2i0rS.

Idertfy looetions
witk adazerc LU

111.
(270043,

ParILUT cycle

Ccradnie ‘LU
residliiil ¢z check
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Karlsruhe Institute of Technoloay

Adid > iions o
spaisity piitterr of
INCO A jA2 A, 2CLIrs.
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Is this a future-oriented algorithm?

AT

Karlsruhe Institute of Technoloay

Idertfy looetions
witk adazerc LU

Interleaving fixed-point sweeps approximating values

: . . _ Dependencies
with pattern-changing symbolic routines.

111.
(270043,

Parallelism inside the building blocks.
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Is this a future-oriented algorithm?

Interleaving fixed-point sweeps approximating values
with pattern-changing symbolic routines.

Parallelism inside the building blocks.

Parallel Task |

Bulk-Synchronous Algorithm!
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Dependencies

Ccrndinie ‘LU
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Is this a future-oriented algorithm?

Interleaving fixed-point sweeps approximating values
with pattern-changing symbolic routines.

Parallelism inside the building blocks.

Parallel Task |

Bulk-Synchronous Algorithm!
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Is this a future-oriented algorithm?

Interleaving fixed-point sweeps approximating values
with pattern-changing symbolic routines.

Parallelism inside the building blocks.
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Is this a future-oriented algorithm? Q(IT

Karlsruhe Institute of Technology

Compute ILU
residual & check
Identify locations convergence.
with nonzero ILU
residual.

Add locations to Fixed-point sweep
sparsity pattern of approximates
incomplete factors. incomplete factors.

Strong dependency —we can not start before finished.
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Is this a future-oriented algorithm?

41

Select a threshold
separating smallest
elements.

Compute ILU
residual & check
convergence.

Identify locations
with nonzero ILU

residual.
Remove smallest

elements from

Add locations to
sparsity pattern of
incomplete factors.

Fixed-point sweep
approximates
incomplete factors.

Strong dependency —we can not start before finished.
Weak dependency —if we start before: +/- few nonzeros.

05/07/2018 Hartwig Anzt: ParILUT — A new parallel threshold ILU

incomplete factors.

AT

Karlsruhe Institute of Technology

Fixed-point sweep
approximates
incomplete factors.
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Is this a future-oriented algorithm?

Compute ILU Select a threshold
residual & check separating smallest
|dentify locations convergence. elements.
with nonzero ILU
residual.

Add locations to Fixed-point sweep Remove smallest
sparsity pattern of approximates elements from
incomplete factors. incomplete factors. incomplete factors.

Strong dependency —we can not start before finished.
Weak dependency —if we start before: +/- few nonzeros.
We can already start with the next iteration.
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Fixed-point sweep
approximates
incomplete factors.
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Is this a future-oriented algorithm?

Compute ILU Select a threshold
residual & check separating smallest
|dentify locations convergence. elements.

with nonzero ILU

AT

Karlsruhe Institute of Technology

residual.

Add locations to Fixed-point sweep Remove smallest
sparsity pattern of approximates elements from
incomplete factors. incomplete factors. incomplete factors.

Fixed-point sweep
approximates
incomplete factors.

Strong dependency —we can not start before finished.
Weak dependency —if we start before: +/- few nonzeros.
We can already start with the next iteration.

Excellent candidate for hybrid hardware?
Asynchronous execution?
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ParIlLUT — A New Parallel Threshold ILU A\‘(IT

Karlsruhe Institute of Technology

Slides available:

Next steps:

e Hybrid ParILUT version utilizing GPU and CPU,
overlapping communication & computation.

* Asynchronous version relaxing dependencies. '

* Use a different sparsity-pattern generator: . N

e Randomized?

[ _]
* Machine learning techniques? Glnkgo

* Increasing fill-in towards “full” factorization.

e ParlLUT routines available in MAGMA-sparse —they will be in Ginkgo!

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

This research is in cooperation with Edmond Chow (GaTech) and Jack Dongarra (University of Tennessee). Helmholtz Impuls und Vernetzungsfond
VH-NG-1241
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Scalability

thermal2 matrix from SuiteSparse, RCM ordering, 8 el/row.

70 T T
CSC— CSR I CcsC « CSR
5ol O Candidates 0.9 R Candidates
¢$ Residuals [ IResiduals
* ILU-norm 0-8 B EILU-norm
50 - CSR— CSC 0
+ Add c
o A Sweept Lo
5 40| o Select2Rm 3
© =
o x Remove GE)O
&30V gl =
- 0.
o
20 F 0.
0.
10+
0.
0 . Il Il Il Il Il Il
0 10 20 30 40 50 60 70 10

Number of Threads

e Building blocks scale with 15% - 100% parallel efficiency.
* Transposition and sort are the bottlenecks.

* Overall speedup ~35x when using 68 KNL cores.
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Scalability

L

Karlsruhe Institute of Technology

topopt1l20 matrix from topology optimization, 67 el/row.

70

o
S
<o

ILU-norm

50 - CSR— CSC

Add
Sweep1

Remove

N
o
4 x0OpP+

CSC— CSR
Candidates
Residuals

Select2Rm

BlCSC « CSR
Il Candidates
[ Residuals
I ILU-norm

Runtime fraction

20 30 40 50 60 70 10 20 30 40 50 60
Number of Threads Number of Threads

e Building blocks scale with 15% - 100% parallel efficiency.

 Dominated by candidate search.

e Qverall
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Performance

AT

Karlsruhe Institute of Technology

Runtime of 5 ParILUT / ParICT steps and speedup over SuperLU ILUT".

ani7 2D Anisotropic Diffusion 203,841 1,407,811 10.48s 0.45s 23.34 0.30s 35.16
apache2 Suite Sparse Matrix Collect. 715,176 4,817,870 6.74 62.27 s 1.24 s 50.22 0.65s 95.37
cagell Suite Sparse Matrix Collect. 39,082 559,722  14.32 60.89s 0.54s 112.56 -
jacobianMat9 Fun3D Fluid Flow Problem 90,708 5,047,042 55.64 153.84s 7.26s 21.19 --
thermal2 Thermal Problem (Suite Sp.) 1,228,045 8,580,313 6.99 91.83s 1.23s 74.66 0.68s 134.25
tmt_sym Suite Sparse Matrix Collect. 726,713 5,080,961 6.97 53.42s 0.70s 76.21 0.41s 131.25
topopt120 Geometry Optimization 132,300 8,802,544  66.53 44,22 s 14.40s 3.07 8.24s 5.37
torso2 Suite Sparse Matrix Collect. 115,967 1,033,473 8.91 10.78s  0.27s 39.92 --
venkatO1 Suite Sparse Matrix Collect. 62,424 1,717,792  27.52 8.53s 0.74s 11.54 --
47  05/07/2018 Hartwig Anzt: ParlLUT — A new parallel threshold ILU Steinbuch Centre for Computing



Karlsruhe Institute of Technology

How about GPUs? -} Sk A\‘(IT

* Fine-grained parallelism

e High bandwidth for coalescent reads
* No deep cache hierarchy

* We need to oversubscribe cores for hiding latency
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Karlsruhe Institute of Technology

How about GPUs? S et A\‘(IT

* Fine-grained parallelism

* Highbandwidth for coalescent reads
* No deep cache hierarchy

* We need to oversubscribe cores for hiding latency . _ _
thermal2 matrix from SuiteSparse, RCM ordering, 8 el/row.

O
o
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Karlsruhe Institute of Technology

How about GPUs? T A\‘(IT

* Fine-grained parallelism

e High bandwidth for coalescent reads
* No deep cache hierarchy

* We need to oversubscribe cores for hiding latency _ o
topopt120 matrix from topology optimization, 67 el/row.

—

Intel Haswell 20c
o
(@) ]

Runtime [s]

o
o

NVIDIA P100 GPU
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ParlLUT quality \\‘(IT

Karlsruhe Institute of Technology

80

p —1C(0)
70 & —|CT |
——ParlCT

CG lterations
N
o

N
(@)
T

o 1 1 1 1
0 2 4 6 8 10

Number of ParICT steps (2 sweeps per step)

* Top-level solver iterations as quality metric.
* Few sweeps give a “better” preconditioner than ILU(O).
e Better than ILUT?
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ParlLUT quality \\‘(IT

Karlsruhe Institute of Technology
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* Top-level solver iterations as quality metric.
* Few sweeps give a “better” preconditioner than ILU(O).
e Better than ILUT?
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ParlLUT quality

80

70

CG lterations
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——ParlCT
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Number of ParICT steps (2 sweeps per step)

* Top-level solver iterations as quality metric.

* Few sweeps give a “better” preconditioner than ILU(O).
e Better than ILUT?
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[parcr

ILU(0)

500

1000 1500
Pattern discrepancy ILUT

* Patternstagnates after few sweeps.
* Pattern “more like” ILUT than ILU(O).
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Test matrices

54

AT

Karleriihe |nstitute of Technology
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Matrix Origin SPD  Num. Rows Nz Nz/Row
ANID 2D anisotropic diffusion yes 12,561 86,227 6.86
ANIG 2D anisotropic diffusion yes 50,721 349,603 6.89
ANI7 2D anisotropic diffusion yes 203,841 1,407,811 6.91
APACHEL Suite Sparse [10] yes 80,800 542,184 6.71
APACHE2 Suite Sparse yes 715,176 4,817,870 6.74
CAGE10 Suite Sparse no 11,397 150,645 13.22
CAGEL1 Suite Sparse no 39,082 559,722 14.32
JACOBIANMATO Fun3D fluid flow [20] no 90,708 5,047,017 55.64
JACOBIANMATY Fun3D fluid flow no 90,708 5,047,042 55.64
MAJORBASIS Suite Sparse no 160,000 1,750,416 10.94
TOPOPTO10 Geometry optimization [24] yes 132,300 8,802,544 66.53
TOPOPTO60 Geometry optimization yes 132,300 7,824,817 59.14
TOPOPT120 Geometry optimization yes 132,300 7,834,644 59.22
THERMALIL Suite Sparse yes 82,654 574,458 6.95
THERMALZ2 Suite Sparse yes 1,228,045 8,580,313 6.99
THERMOMECH_TC  Suite Sparse yes 102,158 711,558 6.97
THERMOMECH_DM  Suite Sparse yes 204,316 1,423,116 6.97
TMT_SYM Suite Sparse yes 726,713 5,080,961 6.99
TORSO2 Suite Sparse no 115,967 1,033,473 8.91
VENKATO1 Suite Sparse no 62,424 1,717,792 27.52
Hartwig Anzt: ParlLUT — A new parallel threshold ILU
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Convergence: GMRES iterations

55

AT

Karlsruhe Institute of Technology

ParILUT
Matrix no prec. | ILU(0) | ILUT 0 1 2 3 4 5
ANIH 882 172 78 278 161 105 84 74 66
ANI6 1,751 391 127 547 315 211 168 143 131
ANI7 3,499 828 290 | 1,083 641 459 370 318 289
CAGEL0 20 8 8 9 7 8 8 8 8
CAGEL1 21 9 8 9 7 7 7 7 7
JACOBIANMATO 315 40 34 63 36 33 33 33 33
JACOBIANMAT9 539 66 65 110 60 55 54 53 53
MAJORBASIS 95 15 9 26 12 11 11 11 11
TOPOPTO10 2,399 565 303 835 492 375 348 340 339
TOPOPTO60 2,852 666 397 963 584 445 417 412 410
TOPOPT120 2,765 668 396 959 584 445 416 408 408
TORSO2 46 10 7 18 8 6 7 7 7
VENKATO1 195 22 17 42 18 17 17 17 17

05/07/2018
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Convergence: CG iterations
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AT

Karlsruhe Institute of Technology

ParICT
Matrix no prec. | 1C(0) ICT 0 1 2 3 4 5
ANIH 951 226 - 297 184 136 108 93 86
ANIG 1,926 621 - 595 374 275 219 181 172
ANIT7 3,895 1,469 — | 1,199 753 559 455 405 377
APACHE] 3,727 368 331 | 1,480 933 517 321 323 323
APACHE2 4,574 1,150 785 | 1,890 1,197 799 766 760 754
THERMAL1 1,640 453 412 626 447 409 389 385 383
THERMAL?Z 6,253 1,729 | 1,604 | 2,372 1,674 1,503 1,457 1,472 1,433
THERMOMECH_DM 21 8 8 8 7 7 7 7 7
THERMOMECH_TC 21 8 7 8 7 7 7 7 7
TMT_SYM 5,481 1,453 | 1,185 | 1,963 1,234 1,071 1,012 992 1,004
TOPOPTO10 2,613 692 331 845 551 402 342 316 313
TOPOPTO60 3,123 871 — 988 749 693 1,116 — —
TOPOPT120 3,062 886 - 991 837 784 2,185 - —

05/07/2018
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Preconditioning A\‘(IT

Karlsruhe Institute of Technology

We iteratively solve a linear system of the form Az = b
Where A € R"*"nonsingular and b, z € R"

The convergence rate typically depends on the
conditioning of the linear system, which is the ratio

between the largest and smallest eigenvalue.
1
A .
condy(A4) = T = A”im = condy (A7)
Amin

)\mam

With M ~ A~ 'we can transform the linear system into
a system with a lower condition number:

MAx = Mb (left preconditioned)
AMy =0b, = My (right preconditioned)

If we now apply the iterative solver to the preconditioned
system, M Ax = Mb we usually get faster convergence.
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Preconditioning

We iteratively solve a linear system of the form Az = b
Where A € R"*"nonsingular and b, z € R"

The convergence rate typically depends on the
conditioning of the linear system, which is the ratio

between the largest and smallest eigenvalue.
1
A .
condy(A4) = T = A”im = condy (A7)
Amin

)\mam

With M ~ A~ 'we can transform the linear system into
a system with a lower condition number:

MAx = Mb (left preconditioned)
AMy =0b, = My (right preconditioned)

If we now apply the iterative solver to the preconditioned
system, M Ax = Mb we usually get faster convergence.
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Assume M = A~ 1 then: © = M Az = Mb.
Solution right available, but computing
M = A~ isexpensive...
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Preconditioning

We iteratively solve a linear system of the form Az = b
Where A € R"*"nonsingular and b, z € R"

The convergence rate typically depends on the
conditioning of the linear system, which is the ratio

between the largest and smallest eigenvalue.
1
A .
condy(A4) = T = A”im = condy (A7)
Amin

)\mam

With M ~ A~ 'we can transform the linear system into
a system with a lower condition number:

MAx = Mb (left preconditioned)
AMy =0b, = My (right preconditioned)

If we now apply the iterative solver to the preconditioned
system, M Ax = Mb we usually get faster convergence.
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Karlsruhe Institute of Technology

Assume M = A~ 1 then: © = M Az = Mb.
Solution right available, but computing
M = A~ isexpensive...

The preconditioned system M A is rarely formed explicitely,
insted M is applied implicitely: zx1 1 = Mriq
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Preconditioning

We iteratively solve a linear system of the form Az = b
Where A € R"*"nonsingular and b, z € R"

The convergence rate typically depends on the
conditioning of the linear system, which is the ratio
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Instead of forming the preconditioner M ~ A~! explicitly
and applying as 2x4+1 = M7k,
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find an approximate factorization A ~ L - U.

In the application phase, the preconditioner is only
given implicitly, requiring two triangular solves:

Zk+1 = Mrg4
-1
M Zk_|_1 = Tk;.|.1
LUzpy1 = Tt
N——
=y

=Ly =rrr1, Uzpr1 =1y

Steinbuch Centre for Computing



