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Motivation

We	are	looking	for	a	factorization-based	preconditioner	such	that	 																			.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.																																													).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	 in	a	highly	parallel	fashion?

A ⇡ L · U
nnz(L+ U) = nnz(A)

S(A) = {(i, j) 2 N2 : Aij 6= 0}
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Exact	LU	Factorization

• Decompose	system	matrix	into	product	 																		.
• Based	on	Gaussian	elimination.
• Triangular	solves	to	solve	a	system															:

• De-Facto	standard	for	solving	dense	problems.
• What	about	sparse?	Often	significant	fill-in…

A = L · U

Ax = b

Incomplete	LU	Factorization	(ILU)

• Focused	on	restricting	fill-in	to	a
specific	sparsity	pattern			.

• For	ILU(0),				is	the	sparsity	pattern	of				.
• Works	well	for	many	problems.
• Is	this	the	best	we	can	get	for	nonzero	count?

• Fill-in	in	threshold	ILU	(ILUT)	bases				on	the
significance	of	elements	(e.g.	magnitude).

• Often	better	preconditioners	than	
level-based	ILU.

• Difficult	to	parallelize.

S

S

A

S

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that	 																			.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.																																													).
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• How	can	we	compute	the	preconditioner	 in	a	highly	parallel	fashion?

Motivation

Ly = b ) y ) Ux = y ) x
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L 2 Rn⇥n

U 2 Rn⇥n

Lij = Uij = 0 8(i, j) /2 S

lower	(unit-)	triangular,	sparse.

upper	triangular,	sparse.

R = L� U, Rij = 0 8(i, j) 2 S
.

.
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Motivation

We	are	looking	for	a	factorization-based	preconditioner	such	that	 																			.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.																																													).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	 in	a	highly	parallel	fashion?

Rethink	the	overall	strategy!

• Use	a	parallel	iterative	process	to	generate	factors.

• The	preconditioner	should	have	a	moderate	number	of	nonzero	elements,
but	we	don’t	care	too	much	about	 intermediate	data.

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 																				is	a	“good”	approximation.

3. Maybe	change	some	locations	in	favor	of	locations	that	result	 in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

A ⇡ L · U
nnz(L+ U) = nnz(A)
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Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U
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Considerations
1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

nnz(A� L · U)
nnz(L+ U)

• This	is	an	optimization	problem	with																															equations
and																									variables.
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Considerations
1. Select	a	set	of	nonzero	 locations.
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• This	is	an	optimization	problem	with																															equations	
and																									variables.

• We	may	want	to	compute	the	values	in										such	that																																										,
the	approximation	being	exact	in	the	 locations	included	in				,	but	not	outside!
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Considerations
1. Select	a	set	of	nonzero	 locations.
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is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	
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• This	is	an	optimization	problem	with																															equations	
and																									variables.

• We	may	want	to	compute	the	values	in										such	that																																										,
the	approximation	being	exact	in	the	 locations	included	in				,	but	not	outside!

• This	is	the	underlying	idea	of	Edmond	Chow’s	parallel	ILU	algorithm1:	

L,U

1Chow	and	Patel.	“Fine-grained	Parallel	Incomplete	LU	Factorization”. In:	SIAM	J.	on	Sci.	Comp.	(2015).

R = A� L · U = 0|S
S

nnz(A� L · U)
nnz(L+ U)

L · U = A|S ) F (lij , uij) =

(
1

ujj

⇣
aij �

Pj�1
k=1 likukj

⌘
, i > j

aij �
Pi�1

k=1 likukj , i  j
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• Converges	in	the	asymptotic	sense	towards	 incomplete	factors	
such	that	
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1Chow	and	Patel.	“Fine-grained	Parallel	Incomplete	LU	Factorization”. In:	SIAM	J.	on	Sci.	Comp.	(2015).
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Considerations
1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
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• This	is	an	optimization	problem	with																															equations	
and																									variables.

• We	may	want	to	compute	the	values	in										such	that																																										,
the	approximation	being	exact	in	the	 locations	included	in				,	but	not	outside!

• This	is	the	underlying	idea	of	Edmond	Chow’s	parallel	ILU	algorithm1:	

• We	may	not	need	high	accuracy	here,	
because	we	may	change	the	pattern	again…

• One	single	fixed-point	sweep.

L,U R = A� L · U = 0|S
S

nnz(A� L · U)
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1Chow	and	Patel.	“Fine-grained	Parallel	Incomplete	LU	Factorization”. In:	SIAM	J.	on	Sci.	Comp.	(2015).
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Considerations
1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

• Comparing	sparsity	patterns	extremely	difficult.
• Maybe	use	the	ILU	residual	as	convergence	check.
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Considerations

A ⇡ L · U

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.
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Considerations
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2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A

1Saad.	“Iterative	Methods	for	Sparse	Linear	Systems,	2nd Edition”. (2003).

• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.
• Then,	the	approximation	will	be	exact	for	all	locations

and	nonzero	 in	locations																																																																																1.	S1 = (S(A) [ S(L0 · U0)) \ S(L0 + U0)
S0 = S(L0 + U0)
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Considerations
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A ⇡ L · U

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A

S1 = (S(A) [ S(L0 · U0)) \ S(L0 + U0)

• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.
• Then,	the	approximation	will	be	exact	for	all	locations

and	nonzero	 in	locations																																																																																1.	

• Adding	all	these	locations	(level-fill!)	might	be	good	idea…

S0 = S(L0 + U0)
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Considerations

A ⇡ L · U

A

S1 = (S(A) [ S(L0 · U0)) \ S(L0 + U0)

• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.
• Then,	the	approximation	will	be	exact	for	all	locations

and	nonzero	 in	locations																																																																																1.	

• Adding	all	these	locations	(level-fill!)	might	be	good	idea, but	adding	these	
will	again	generate	new	nonzero	residuals

S0 = S(L0 + U0)

S2 = (S(A) [ S(L1 · U1)) \ S(L1 + U1)
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1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.
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Considerations

A ⇡ L · U

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

• At	some	point	we	should	remove	some	locations	again,	e.g.	the	smallest	elements,
and	start	over	looking	at	locations																																	…R = A� Lk · Uk
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Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.

ParILUT
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ParILUT :	Parallelism	inside	the	blocks

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.
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Parallelism	inside	the	blocks:	Fixed-point	sweeps

Fixed-point	sweeps	approximate	values	in	ILU	factors	and	residual1:

• Inherently	parallel	operation.
• Elements	can	be	updated	asynchronously.

• We	can	expect	100%	parallel	efficiency	if	
number	of	cores	<	number	of	elements

• Residual	norm	is	a	global	reduction.

1Chow	and	Patel.	“Fine-grained	Parallel	Incomplete	LU	Factorization”. In:	SIAM	J.	on	Sci.	Comp.	(2015).

bilinear	fixed-point	iteration	can	be	parallelized	by	elements	

F (lij , uij) =

(
1

ujj

⇣
aij �

Pj�1
k=1 likukj

⌘
, i > j

aij �
Pi�1

k=1 likukj , i  j
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Parallelism	inside	the	blocks:	Candidate	search

S⇤ = (S(A) [ S(L · U)) \ S(L+ U)

sparse	matrix	product

sparse	matrix	sum

• Combination	of	sparse	matrix	product	and
sparse	matrix	sums.

• Building	blocks	available	in	SparseBLAS.
• Blocks	can	be	combined	into	one	kernel	for	

higher	(memory)	efficiency.
• Kernel	can	be	parallelized	by	rows.

• Cost	heavily	dependent	on	sparsity	pattern.

• Kernel	performance	bound	by	memory	bandwidth.

sparse	matrix	sum

Identify	locations	that	are	symbolically	nonzero:
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Parallelism	inside	the	blocks:	Selecting	thresholds

A	threshold	separating	the	smallest	elements	is	needed	
for	removing	insignificant	locations	and	keeping	sparsity.

• Standard	approach:	sort	/	selection	algorithms
• High	computational	cost
• Memory-intensive
• Hard	to	parallelize

• Thresholds	do	not	need	to	be	exact:	
• Inaccurate	thresholds	result	in	a	few	additional	/	less	elements.
• We	can	use	sampling	to	get	reasonable	approximations.
• Multiple	sampling-based	selection	runs	allow to	generate	

thresholds	of	reasonable	quality	in	parallel.

• Is	this	appropriate	for	many-core	architectures	
with	5K	threads	executing	simultaneously?
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Threshold	selection	on	parallel	architectures

• SelectionSort (												comparisons,											element	swaps)
• QuickSelect (average											comparisons,											element	swaps)
• Floyd-Rivest algorithm	(																																																					)
• IntroSelect (worst	case											comparisons,											element	swaps)

John	D.	McCaplin (TACC)

Selection	algorithms	traditionally	based	on	re-arranging	elements	in	memory.

O(n)O(n2)
O(n) O(n)

O(n) O(n)
n+min(k, n� k) +O(

p
n)

• Compute	power	(#FLOPs)	grows	much	faster	than	
memory	bandwidth.

• Data-rearranging	selection	algorithms	become	inefficient.

”Operations	 are	free,	memory	access	is	what	counts.”

64bit	read,
1	FLOP	
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Threshold	selection	on	parallel	architectures:	StreamSelect

Rethink	the	overall	strategy!

• Primary	goal:	reduce	the	memory	traffic.
• Account	for	high	core	counts,	each	having	a	set	of	registers.
• Assume	“nice”	distribution	of	values	(	~uniform	).
• Accept	some	inaccuracy	in	the	generated	threshold	(approximation).

1. Find	the	largest	and	smallest	elements	to	get	the	data	range.

2. Generate	a	fine	grid	of	thresholds,	distribute them	to	the	cores.
3. Stream	all	data	one	single	time.
4. Each	core	handles	a	set	of	thresholds	 and	counts	how	many	

elements are	larger/smaller.
5. Select	the	threshold	with	the	element	count	closest	to	the	

target	value.

NVIDIA	V100	“Volta”
7.8	TFLOP/s	DP
16GB	RAM	@900	GB/s

80	Multiprocessors,	each	with	64	FP32	cores
[oversubscribe	with	threads	to	hide	latency]
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Threshold	selection	on	parallel	architectures:	StreamSelect

Rethink	the	overall	strategy!

• Primary	goal:	reduce	the	memory	traffic.
• Account	for	high	core	counts,	each	having	a	set	of	registers.
• Assume	“nice”	distribution	of	values	(	~uniform	).
• Accept	some	inaccuracy	in	the	generated	threshold	(approximation).

1. Find	the	largest	and	smallest	elements	to	get	the	data	range.

2. Generate	a	fine	grid	of	thresholds,	distribute them	to	the	cores.
3. Stream	all	data	one	single	time.
4. Each	core	handles	a	set	of	thresholds	 and	counts	how	many	

elements are	larger/smaller.
5. Select	the	threshold	with	the	element	count	closest	to	the	

target	value.

NVIDIA	V100	“Volta”
7.8	TFLOP/s	DP
16GB	RAM	@900	GB/s

80	Multiprocessors,	each	with	64	FP32	cores
[oversubscribe	with	threads	to	hide	latency]

Run	5120	threads	(bind	to	cores)	each	a	few	thresholds:

32 thresholds gives mesh granularity of 6.1035e-06
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Threshold	selection	on	parallel	architectures:	StreamSelect

Rethink	the	overall	strategy!

• Primary	goal:	reduce	the	memory	traffic.
• Account	for	high	core	counts,	each	having	a	set	of	registers.
• Assume	“nice”	distribution	of	values	(	~uniform	).
• Accept	some	inaccuracy	in	the	generated	threshold	(approximation).

1. Find	the	largest	and	smallest	elements	to	get	the	data	range.

2. Generate	a	fine	grid	of	thresholds,	distribute them	to	the	cores.
3. Stream	all	data	one	single	time.
4. Each	core	handles	a	set	of	thresholds	 and	counts	how	many	

elements are	larger/smaller.
5. Select	the	threshold	with	the	element	count	closest	to	the	

target	value.

NVIDIA	V100	“Volta”
7.8	TFLOP/s	DP
16GB	RAM	@900	GB/s

On	a	V100	GPU:	80	Multiprocessors	
each	with	32	FP64	cores	

64	FP32	cores
[oversubscribe	with	threads	to	hide	latency]

Run	5120	threads	(bind	to	cores)	each	a	few	thresholds:

32 thresholds gives mesh granularity of 6.1035e-06

• Set	size	m,	subset	size	n*
• For	uniform	distribution:	 quality	~	mesh	granularity.

• Runtime	increases	linear	with	set	size.
• Runtime	independent	of	subset	 size.
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Is	this	a	future-oriented	algorithm?

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.
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Is	this	a	future-oriented	algorithm?

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Bulk-Synchronous	 Algorithm!
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Is	this	a	future-oriented	algorithm?

DependenciesInterleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Bulk-Synchronous	 Algorithm!
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Is	this	a	future-oriented	algorithm?

DependenciesInterleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Bulk-Synchronous	 Algorithm!
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Is	this	a	future-oriented	algorithm?

DependenciesInterleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Bulk-Synchronous	 Algorithm!
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Is	this	a	future-oriented	algorithm?

DependenciesInterleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Bulk-Synchronous	 Algorithm!



Steinbuch Centre for Computing40 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Strong	dependency	 –we	can	not	start	before	finished.

Is	this	a	future-oriented	algorithm?
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Strong	dependency	 –we	can	not	start	before	finished.
Weak	dependency	 – if	we	start	before:	+/- few	nonzeros.

Is	this	a	future-oriented	algorithm?
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Strong	dependency	 –we	can	not	start	before	finished.
Weak	dependency	 – if	we	start	before:	+/- few	nonzeros.
We	can	already	start	with	the	next	iteration.

Is	this	a	future-oriented	algorithm?
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Excellent	candidate	for	hybrid	hardware?
Asynchronous	 execution?

GPU?

Strong	dependency	 –we	can	not	start	before	finished.
Weak	dependency	 – if	we	start	before:	+/- few	nonzeros.
We	can	already	start	with	the	next	iteration.

Is	this	a	future-oriented	algorithm?
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ParILUT – A	New	Parallel	Threshold ILU

• Hybrid	ParILUT version	utilizing	GPU	and	CPU,	
overlapping	communication	&	computation.

• Asynchronous version	relaxing	dependencies.

• Use	a	different	sparsity-pattern	generator:	
• Randomized?
• Machine	learning	techniques?

• Increasing	fill-in	towards	“full”	factorization.

• ParILUT routines	available	in	MAGMA-sparse	– they	will	be	in	Ginkgo!

Helmholtz Impuls und Vernetzungsfond
VH-NG-1241

Next	steps:

This	research	is	in	cooperation	with	Edmond	Chow	(GaTech)	and	Jack	Dongarra (University	of	Tennessee).

Slides	available:
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Scalability
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thermal2matrix	from	SuiteSparse,	RCM	ordering,	8	el/row.

Intel	Xeon Phi 7250	“Knights Landing”
68	cores	@1.40	GHz,	
16GB	MCDRAM	@490	GB/s

• Building	blocks	scale	with	15%	- 100%	parallel	efficiency.
• Transposition	and	sort	are	the	bottlenecks.
• Overall	speedup	~35x	when	using	68	KNL	cores.
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Intel	Xeon Phi 7250	“Knights Landing”
68	cores	@1.40	GHz,	
16GB	MCDRAM	@490	GB/s

Scalability
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topopt120matrix	from	topology	optimization,	67	el/row.

• Building	blocks	scale	with	15%	- 100%	parallel	efficiency.
• Dominated	by	candidate	search.
• Overall	speedup	~52x	when	using	68	KNL	cores.
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Intel	Xeon Phi 7250	“Knights Landing”
68	cores	@1.40	GHz,	
16GB	MCDRAM	@490	GB/s

Performance

Matrix Origin Rows Nonzeros Ratio SuperLU ParILUT ParICT

ani7	 2D	Anisotropic	Diffusion	 												 203,841 1,407,811 6.91 10.48	s	 0.45	s	 23.34 0.30	s	 35.16

apache2	 Suite	Sparse	Matrix	Collect.									 715,176 4,817,870 6.74 62.27	s	 1.24	s	 50.22 0.65	s	 95.37

cage11	 Suite	Sparse	Matrix	Collect.									 39,082 559,722 14.32 60.89	s 0.54	s	 112.56 --

jacobianMat9	 Fun3D	Fluid	 Flow	Problem													 90,708 5,047,042 55.64 153.84	s	 7.26	s	 21.19 --

thermal2	 Thermal	Problem	(Suite Sp.) 1,228,045 8,580,313 6.99 91.83	s	 1.23	s	 74.66 0.68	s	 134.25

tmt_sym Suite	Sparse	Matrix	Collect.									 726,713 5,080,961 6.97 53.42	s	 0.70	s	 76.21 0.41	s	 131.25

topopt120	 Geometry Optimization 132,300 8,802,544 66.53 44.22	s	 14.40	s	 3.07 8.24	s	 5.37

torso2	 Suite	Sparse	Matrix	Collect.									 115,967 1,033,473 8.91 10.78	s	 0.27	s	 39.92 --

venkat01	 Suite	Sparse	Matrix	Collect.									 62,424 1,717,792 27.52 8.53	s	 0.74	s	 11.54 --

Runtime	of	5	ParILUT /	ParICT steps	and	speedup over	SuperLU ILUT*.

*We	thank	Sherry	Li	and	Meiyue Shao	for	technical	help	in	generating	the	performance	numbers.	
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How	about	GPUs?

• Fine-grained	parallelism
• High	bandwidth	 for	coalescent	reads
• No	deep	cache	hierarchy

• We	need	to	oversubscribe	cores	for	hiding	latency

NVIDIA	V100	“Volta”
7.8	TFLOP/s	DP
16GB	RAM	@900	GB/s
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How	about	GPUs?

• Fine-grained	parallelism
• High	bandwidth	 for	coalescent	reads
• No	deep	cache	hierarchy

• We	need	to	oversubscribe	cores	for	hiding	latency
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How	about	GPUs?

• Fine-grained	parallelism
• High	bandwidth	 for	coalescent	reads
• No	deep	cache	hierarchy

• We	need	to	oversubscribe	cores	for	hiding	latency
topopt120matrix	from	topology	optimization,	67	el/row.
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• Top-level	solver	iterations	as	quality	metric.
• Few	sweeps	give	a	“better”	preconditioner	than	ILU(0).
• Better	than	ILUT?

ParILUT quality
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• Top-level	solver	iterations	as	quality	metric.
• Few	sweeps	give	a	“better”	preconditioner	than	ILU(0).
• Better	than	ILUT?
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Anisotropic	fluid	flow	problem
n:	741,	nz:	4,951

• Top-level	solver	iterations	as	quality	metric.
• Few	sweeps	give	a	“better”	preconditioner	than	ILU(0).
• Better	than	ILUT?

ParILUT quality

• Pattern	stagnates	after	few	sweeps.
• Pattern	“more	like”	ILUT	than	ILU(0).
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Test	matrices
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Convergence:	GMRES	iterations
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Convergence:	CG	iterations
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Preconditioning

Ax = b

We	iteratively	solve a	linear	system	of	the	form												
Where																				nonsingular	and																	.

The	convergence	rate	typically	depends	on	the
conditioning of	the	 linear	system,	which	is	the	ratio	
between	the	largest	and	smallest	eigenvalue.

With																				we	can	transform the	linear	system	into	
a	system	with	a	lower	condition	number:

If	we	now	apply	the	 iterative	solver	to	the	preconditioned
system,																						 we	usually	get	faster	convergence.	

A 2 Rn⇥n
b, x 2 Rn

MAx = Mb (left preconditioned)

AMy = b, x = My (right preconditioned)

cond2(A) =

�
max

�
min

=

1
�

min

1
�

max

= cond2(A
�1

)

MAx = Mb

M ⇡ A�1
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Preconditioning

Assume	 ,	then:	 																																	.
Solution	right	available,	but	computing

is	expensive…

M = A�1
x = MAx = Mb

M = A�1

Ax = b

We	iteratively	solve a	linear	system	of	the	form												
Where																				nonsingular	and																	.

The	convergence	rate	typically	depends	on	the
conditioning of	the	 linear	system,	which	is	the	ratio	
between	the	largest	and	smallest	eigenvalue.

With																				we	can	transform the	linear	system	into	
a	system	with	a	lower	condition	number:

If	we	now	apply	the	 iterative	solver	to	the	preconditioned
system,																						 we	usually	get	faster	convergence.	
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Preconditioning

Assume	 ,	then:	 																																	.
Solution	right	available,	but	computing

is	expensive…

The	preconditioned	system									is	rarely	formed	explicitely,
insted							is	applied	implicitely:

M = A�1
x = MAx = Mb

M = A�1

Ax = b

We	iteratively	solve a	linear	system	of	the	form												
Where																				nonsingular	and																	.

The	convergence	rate	typically	depends	on	the
conditioning of	the	 linear	system,	which	is	the	ratio	
between	the	largest	and	smallest	eigenvalue.

With																				we	can	transform the	linear	system	into	
a	system	with	a	lower	condition	number:

If	we	now	apply	the	 iterative	solver	to	the	preconditioned
system,																						 we	usually	get	faster	convergence.	

A 2 Rn⇥n
b, x 2 Rn

MAx = Mb (left preconditioned)

AMy = b, x = My (right preconditioned)

cond2(A) =

�
max

�
min

=

1
�

min

1
�

max

= cond2(A
�1

)

MAx = Mb

M ⇡ A�1

M zk+1 = Mrk+1

MA
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Preconditioning

Assume	 ,	then:	 																																	.
Solution	right	available,	but	computing

is	expensive…

The	preconditioned	system									is	rarely	formed	explicitely,
insted							is	applied	implicitely:

Instead	of	forming	the	preconditioner	 																 explicitly	
and	applying	as																														,	
Incomplete	Factorization	Preconditioner	(ILU)	try	to	
find	an	approximate	factorization																			.

M = A�1
x = MAx = Mb

M = A�1

zk+1 = Mrk+1

M ⇡ A�1

A ⇡ L · U

Ax = b

We	iteratively	solve a	linear	system	of	the	form												
Where																				nonsingular	and																	.

The	convergence	rate	typically	depends	on	the
conditioning of	the	 linear	system,	which	is	the	ratio	
between	the	largest	and	smallest	eigenvalue.

With																				we	can	transform the	linear	system	into	
a	system	with	a	lower	condition	number:

If	we	now	apply	the	 iterative	solver	to	the	preconditioned
system,																						 we	usually	get	faster	convergence.	

A 2 Rn⇥n
b, x 2 Rn

MAx = Mb (left preconditioned)

AMy = b, x = My (right preconditioned)

cond2(A) =

�
max

�
min

=
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�
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1
�

max

= cond2(A
�1

)

MAx = Mb
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Preconditioning

Assume	 ,	then:	 																																	.
Solution	right	available,	but	computing

is	expensive…

The	preconditioned	system									is	rarely	formed	explicitely,
insted							is	applied	implicitely:

Instead	of	forming	the	preconditioner	 																 explicitly	
and	applying	as																														,	
Incomplete	Factorization	Preconditioner	(ILU)	try	to	
find	an	approximate	factorization																			.

In	the	application	phase,	the	preconditioner	 is	only	
given	implicitly,	requiring	two	triangular	solves:

M = A�1
x = MAx = Mb

M = A�1

zk+1 = Mrk+1

M�1zk+1 = rk+1

LUzk+1| {z }
=:y

= rk+1

)Ly = rk+1, Uzk+1 = y

zk+1 = Mrk+1

M ⇡ A�1

Ax = b

We	iteratively	solve a	linear	system	of	the	form												
Where																				nonsingular	and																	.

The	convergence	rate	typically	depends	on	the
conditioning of	the	 linear	system,	which	is	the	ratio	
between	the	largest	and	smallest	eigenvalue.

With																				we	can	transform the	linear	system	into	
a	system	with	a	lower	condition	number:

If	we	now	apply	the	 iterative	solver	to	the	preconditioned
system,																						 we	usually	get	faster	convergence.	

A 2 Rn⇥n
b, x 2 Rn

MAx = Mb (left preconditioned)

AMy = b, x = My (right preconditioned)

cond2(A) =

�
max

�
min

=

1
�

min

1
�

max

= cond2(A
�1

)

MAx = Mb

M ⇡ A�1

MA
M zk+1 = Mrk+1

A ⇡ L · U


