

ParILUT – A New Parallel Threshold ILU

05/07/2018

Kolloquiumsvortrag in der Fakultät für Informatik

We are looking for a factorization-based preconditioner such that $A \approx L \cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U) = nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

 $\mathcal{S}(A) = \{(i,j) \in \mathbb{N}^2 : A_{ij} \neq 0\}$

We are looking for a factorization-based preconditioner such that $A \approx L \cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U) = nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization

- Decompose system matrix into product $A = L \cdot U$.
- Based on Gaussian elimination.
- Triangular solves to solve a system Ax = b:

$$Ly = b \Rightarrow y \qquad \Rightarrow \qquad Ux = y \Rightarrow x$$

• De-Facto standard for solving dense problems.

We are looking for a factorization-based preconditioner such that $A \approx L \cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U) = nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization

- Decompose system matrix into product $A = L \cdot U$.
- Based on Gaussian elimination.
- Triangular solves to solve a system Ax = b:

$$Ly = b \Rightarrow y \qquad \Rightarrow \qquad Ux = y \Rightarrow x$$

- De-Facto standard for solving dense problems.
- What about sparse? Often significant fill-in...

1	×	×	×	×		×	×		1
[×	×	\times						
	×	\times	\times	\times					
	×		×	\times	\times	×			×
				\times	\times	\times		×	×
	×			\times	×	\times	\times	\times	
	×					×	×		
					×	×		\times	×
				×	×			×	×

We are looking for a factorization-based preconditioner such that $A \approx L \cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U) = nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization

- Decompose system matrix into product $A = L \cdot U$.
- Based on Gaussian elimination.
- Triangular solves to solve a system Ax = b:

$$Ly = b \Rightarrow y \qquad \Rightarrow \qquad Ux = y \Rightarrow x$$

- De-Facto standard for solving dense problems.
- What about sparse? Often significant fill-in...

Incomplete LU Factorization (ILU)

• Focused on restricting fill-in to a specific sparsity pattern S.

 $L \in \mathbb{R}^{n \times n}$ lower (unit-) triangular, sparse.

 $U \in \mathbb{R}^{n \times n}$ upper triangular, sparse.

$$L_{ij} = U_{ij} = 0 \ \forall (i,j) \notin \mathcal{S}.$$
$$R = L - U, \ R_{ij} = 0 \ \forall (i,j) \in \mathcal{S}.$$

We are looking for a factorization-based preconditioner such that $A \approx L \cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U) = nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization

- Decompose system matrix into product $A = L \cdot U$.
- Based on Gaussian elimination.
- Triangular solves to solve a system Ax = b:

$$Ly = b \Rightarrow y \qquad \Rightarrow \qquad Ux = y \Rightarrow x$$

- De-Facto standard for solving dense problems.
- What about sparse? Often significant fill-in...

Incomplete LU Factorization (ILU)

- Focused on restricting fill-in to a specific sparsity pattern S.
- For ILU(0), S is the sparsity pattern of A.
 - Works well for many problems.

X

X

× ×

• Is this the best we can get for nonzero count?

We are looking for a factorization-based preconditioner such that $A \approx L \cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U) = nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization

- Decompose system matrix into product $A = L \cdot U$.
- Based on Gaussian elimination.
- Triangular solves to solve a system Ax = b:

$$Ly = b \Rightarrow y \qquad \Rightarrow \qquad Ux = y \Rightarrow x$$

- De-Facto standard for solving dense problems.
- What about sparse? Often significant fill-in...

Incomplete LU Factorization (ILU)

- Focused on restricting fill-in to a specific sparsity pattern S.
- For ILU(0), S is the sparsity pattern of A.
 - Works well for many problems.
 - Is this the best we can get for nonzero count?
- Fill-in in threshold ILU (ILUT) bases S on the significance of elements (e.g. magnitude).
 - Often better preconditioners than level-based ILU.
 - Difficult to parallelize.

We are looking for a factorization-based preconditioner such that $A \approx L \cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U) = nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Rethink the overall strategy!

- Use a parallel iterative process to generate factors.
- The preconditioner should have a moderate number of nonzero elements, but we don't care too much about intermediate data.
 - 1. Select a set of nonzero locations.
 - 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
 - 3. Maybe change some locations in favor of locations that result in a better preconditioner.
 - 4. Repeat until the preconditioner quality stagnates.

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem...

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem...

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem...

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem...

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem...

Karlsruhe Institute of Technology

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A L \cdot U)$ equations and nnz(L + U) variables.

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A L \cdot U)$ equations and nnz(L + U) variables.
- We may want to compute the values in L, U such that $R = A L \cdot U = 0|_{S}$, the approximation being exact in the locations included in S, but not outside!

nnz(L+U) equations nnz(L+U) variables

Sparsity pattern S

15

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A L \cdot U)$ equations and nnz(L + U) variables.
- We may want to compute the values in L, U such that $R = A L \cdot U = 0|_{S}$, the approximation being exact in the locations included in S, but not outside!
- This is the underlying idea of Edmond Chow's parallel ILU algorithm¹:

$$L \cdot U = A|_{\mathcal{S}} \quad \Rightarrow \quad F(l_{ij}, u_{ij}) = \begin{cases} \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right), & i > j \\ a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, & i \le j \end{cases}$$

¹Chow and Patel. "Fine-grained Parallel Incomplete LU Factorization". In: SIAM J. on Sci. Comp. (2015).

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A L \cdot U)$ equations and nnz(L + U) variables.
- We may want to compute the values in L, U such that $R = A L \cdot U = 0|_{S}$, the approximation being exact in the locations included in S, but not outside!
- This is the underlying idea of Edmond Chow's parallel ILU algorithm¹:

$$L \cdot U = A|_{\mathcal{S}} \quad \Rightarrow \quad F(l_{ij}, u_{ij}) = \begin{cases} \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right), & i > j \\ a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, & i \le j \end{cases}$$

• Converges in the asymptotic sense towards incomplete factors L, Usuch that $R = A - L \cdot U = 0|_{S}$

¹Chow and Patel. "Fine-grained Parallel Incomplete LU Factorization". In: SIAM J. on Sci. Comp. (2015).

Karlsruhe Institute of Technology

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A L \cdot U)$ equations and nnz(L + U) variables.
- We may want to compute the values in L, U such that $R = A L \cdot U = 0|_{S}$, the approximation being exact in the locations included in S, but not outside!
- This is the underlying idea of Edmond Chow's parallel ILU algorithm¹:

$$L \cdot U = A|_{\mathcal{S}} \quad \Rightarrow \quad F(l_{ij}, u_{ij}) = \begin{cases} \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right), & i > j \\ a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, & i \le j \end{cases}$$

- We may not need high accuracy here, because we may change the pattern again...
- One single fixed-point sweep.

¹Chow and Patel. "Fine-grained Parallel Incomplete LU Factorization". In: SIAM J. on Sci. Comp. (2015).

Fixed-point sweep

approximates incomplete factors.

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- Comparing sparsity patterns extremely difficult.
- Maybe use the ILU residual as convergence check.

Compute ILU residual & check convergence.

Fixed-point sweep approximates incomplete factors.

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- The sparsity pattern of A might be a good initial start for nonzero locations.

Compute ILU residual & check convergence.

Fixed-point sweep approximates incomplete factors.

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.

Identify locations with nonzero ILU residual.

> Compute ILU residual & check convergence.

- The sparsity pattern of A might be a good initial start for nonzero locations.
- Then, the approximation will be exact for all locations $S_0 = S(L_0 + U_0)$ and nonzero in locations $S_1 = (S(A) \cup S(L_0 \cdot U_0)) \setminus S(L_0 + U_0)^1$.

¹Saad. "Iterative Methods for Sparse Linear Systems, 2nd Edition". (2003).

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- The sparsity pattern of A might be a good initial start for nonzero locations.
- Then, the approximation will be exact for all locations $S_0 = S(L_0 + U_0)$ and nonzero in locations $S_1 = (S(A) \cup S(L_0 \cdot U_0)) \setminus S(L_0 + U_0)^1$.
- Adding all these locations (level-fill!) might be good idea...

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- The sparsity pattern of A might be a good initial start for nonzero locations.
- Then, the approximation will be exact for all locations $S_0 = S(L_0 + U_0)$ and nonzero in locations $S_1 = (S(A) \cup S(L_0 \cdot U_0)) \setminus S(L_0 + U_0)^1$.
- Adding all these locations (level-fill!) might be good idea, but adding these will again generate new nonzero residuals $S_2 = (S(A) \cup S(L_1 \cdot U_1)) \setminus S(L_1 + U_1)$

Identify locations

with nonzero ILU

residual.

Add locations to sparsity pattern of incomplete factors.

- Select a set of nonzero locations.
- Compute values in those locations such that 2. $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- Repeat until the preconditioner quality stagnates. 4.

Identify locations with nonzero ILU residual.

> **Compute ILU** residual & check convergence.

approximates

Add locations to sparsity pattern of incomplete factors.

Fixed-point sweep incomplete factors.

At some point we should remove some locations again, e.g. the smallest elements, and start over looking at locations $R = A - L_k \cdot U_k$...

Remove smallest

elements from

incomplete factors.

Select a threshold

separating smallest

elements.

24 05/07/2018 Hartwig Anzt: ParILUT – A new parallel threshold ILU

ParILUT

Interleaving fixed-point sweeps approximating values Identify locations with nonzero ILU with pattern-changing symbolic routines. residual. **Compute ILU** Fixed-point sweep residual & check 0 approximates ୖ୰ୢୣୢ incomplete factors. convergence. 8 000 $^{\circ}$ 9 ° 0 **ParILUT cycle** 0 0 **Remove smallest** Add locations to elements from sparsity pattern of incomplete factors. incomplete factors. Select a threshold Fixed-point sweep separating smallest approximates elements. incomplete factors.

ParILUT : Parallelism inside the blocks

Parallelism inside the blocks: Fixed-point sweeps

Fixed-point sweepCoapproximatesresidincomplete factors.cor

Compute ILU residual & check convergence.

Fixed-point sweeps approximate values in ILU factors and residual¹:

- Inherently parallel operation.
- Elements can be updated asynchronously.
- We can expect 100% parallel efficiency if number of cores < number of elements
- Residual norm is a global reduction.

¹Chow and Patel. "Fine-grained Parallel Incomplete LU Factorization". In: SIAM J. on Sci. Comp. (2015).

bilinear fixed-point iteration can be parallelized by elements

 $F(l_{ij}, u_{ij}) = \begin{cases} \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right), & i > j \\ a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, & i \le j \end{cases}$

Parallelism inside the blocks: Candidate search

with nonzero ILU residual.

Identify locations that are symbolically nonzero:

- Combination of sparse matrix product and sparse matrix sums.
- Building blocks available in SparseBLAS.
- Blocks can be combined into one kernel for higher (memory) efficiency.
- Kernel can be parallelized by rows.
- Cost heavily dependent on sparsity pattern.
- *Kernel performance bound by memory bandwidth.*

$$S^* = (S(A) \cup S(L \cdot U)) \setminus S(L + U)$$

sparse matrix product
sparse matrix sum

Identify locations

Parallelism inside the blocks: Selecting thresholds

A threshold separating the smallest elements is needed for removing insignificant locations and keeping sparsity.

- Standard approach: sort / selection algorithms
 - High computational cost
 - Memory-intensive
 - Hard to parallelize
- Thresholds do not need to be exact:
 - Inaccurate thresholds result in a few additional / less elements.
 - We can use sampling to get reasonable approximations.
 - Multiple sampling-based selection runs allow to generate thresholds of reasonable quality in parallel.
- Is this appropriate for many-core architectures with 5K threads executing simultaneously?

Select a threshold separating smallest elements.

Threshold selection on parallel architectures

Selection algorithms traditionally based on re-arranging elements in memory.

- SelectionSort ($\mathcal{O}(n^2)$ comparisons, $\mathcal{O}(n)$ element swaps)
- QuickSelect (average $\mathcal{O}(n)$ comparisons, $\mathcal{O}(n)$ element swaps)
- Floyd-Rivest algorithm $(n + min(k, n k) + O(\sqrt{n}))$
- IntroSelect (worst case $\mathcal{O}(n)$ comparisons, $\mathcal{O}(n)$ element swaps)

Select a threshold separating smallest elements.

- Compute power (#FLOPs) grows much faster than memory bandwidth.
- Data-rearranging selection algorithms become inefficient.

"Operations are free, memory access is what counts."

Threshold selection on parallel architectures: StreamSelect

Rethink the overall strategy!

- Primary goal: reduce the memory traffic.
- Account for high core counts, each having a set of registers.
- Assume "nice" distribution of values (~uniform).
- Accept some inaccuracy in the generated threshold (approximation).
 - 1. Find the largest and smallest elements to get the data range.
 - 2. Generate a *fine grid of thresholds, distribute* them to the cores.
 - 3. Stream all data one single time.
 - 4. Each core handles a set of thresholds and counts how many elements are larger/smaller.
 - 5. Select the threshold with the element count closest to the target value.

NVIDIA V100 "Volta" 7.8 TFLOP/s DP 16GB RAM @900 GB/s 80 Multiprocessors, each with 64 FP32 cores [oversubscribe with threads to hide latency]

Assume "nice" distribution of values (~uniform).

- Accept some inaccuracy in the generated threshold (approximation).
 - Find the largest and smallest elements to get the data range.
 - Generate a **fine grid of thresholds**, **distribute** them to the cores. 2.
 - Stream all data one single time. 3.
 - *Each core* handles a set of thresholds and *counts* how many 4. *elements* are larger/smaller.
 - Select the threshold with the element count closest to the 5. target value.

NVIDIA V100 "Volta" 7.8 TFLOP/s DP 16GB RAM @900 GB/s

80 Multiprocessors, each with 64 FP32 cores [oversubscribe with threads to hide latency]

Run 5120 threads (bind to cores) each a few thresholds:

32 thresholds gives mesh granularity of 6.1035e-06

Threshold selection on parallel architectures: StreamSelect

Rethink the overall strategy!

- Primary goal: reduce the memory traffic.
- Account for high core counts, each having a set of registers.

Threshold selection on parallel architectures: StreamSelect

16GB RAM @900 GB/s

Set size m, subset size n*

 10^{4}

Ret

 10^{0}

10^{-5 |}

10⁻¹⁰

10³

Deviation

For uniform distribution: quality ~ mesh granularity.

Runtime increases linear with set size.

Steinbuch Centre for Computing

Thresholds per thread

32 thresholds gives mesh granularity of 6.1035e-06

Strong dependency – we can not start before finished.

40 05/07/2018 Hartwig Anzt: ParILUT – A new parallel threshold ILU

Strong dependency – we can not start before finished. Weak dependency – if we start before: +/- few nonzeros.

42 05/07/2018 Hartwig Anzt: ParILUT – A new parallel threshold ILU

Excellent candidate for hybrid hardware? Asynchronous execution?

ParILUT – A New Parallel Threshold ILU

Slides available:

Next steps:

- Hybrid ParILUT version utilizing GPU and CPU, overlapping communication & computation.
- Asynchronous version relaxing dependencies.
- Use a different sparsity-pattern generator:
 - Randomized?
 - Machine learning techniques?
- Increasing fill-in towards "full" factorization.
- ParILUT routines available in MAGMA-sparse they will be in Ginkgo!

This research is in cooperation with Edmond Chow (GaTech) and Jack Dongarra (University of Tennessee).

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Helmholtz Impuls und Vernetzungsfond VH-NG-1241

Scalability

thermal2 matrix from SuiteSparse, RCM ordering, 8 el/row.

Intel Xeon Phi 7250 "Knights Landing" 68 cores @1.40 GHz, 16GB MCDRAM @490 GB/s

- Building blocks scale with 15% 100% parallel efficiency.
- Transposition and sort are the bottlenecks.
- Overall speedup ~35x when using 68 KNL cores.

Scalability

Intel Xeon Phi 7250 "Knights Landing" 68 cores @1.40 GHz, 16GB MCDRAM @490 GB/s

topopt120 matrix from topology optimization, 67 el/row.

- Building blocks scale with 15% 100% parallel efficiency.
- Dominated by candidate search.
- Overall speedup ~52x when using 68 KNL cores.

Performance

Intel Xeon Phi 7250 "Knights Landing" 68 cores @1.40 GHz, 16GB MCDRAM @490 GB/s

Runtime of 5 ParILUT / ParICT steps and speedup over SuperLU ILUT*.

Matrix	Origin	Rows	Nonzeros Ratio		SuperLU	ParlLUT		ParlCT		
ani7	2D Anisotropic Diffusion	203,841	1,407,811	6.91	10.48 s	0.45 s	23.34	0.30 s	35.16	
apache2	Suite Sparse Matrix Collect.	715,176	4,817,870	6.74	62.27 s	1.24 s	50.22	0.65 s	0.65 s 95.37	
cage11	Suite Sparse Matrix Collect.	39,082	559,722	14.32	60.89 s	0.54 s	112.56			
jacobianMat9	Fun3D Fluid Flow Problem	90,708	5,047,042	55.64	153.84 s	7.26 s	21.19			
thermal2	Thermal Problem (Suite Sp.)	1,228,045	8,580,313	6.99	91.83 s	1.23 s	74.66	0.68 s	134.25	
tmt_sym	Suite Sparse Matrix Collect.	726,713	5,080,961	6.97	53.42 s	0.70 s	76.21	0.41 s	131.25	
topopt120	Geometry Optimization	132,300	8,802,544	66.53	44.22 s	14.40 s	3.07	8.24 s	5.37	
torso2	Suite Sparse Matrix Collect.	115,967	1,033,473	8.91	10.78 s	0.27 s	39.92			
venkat01	Suite Sparse Matrix Collect.	62,424	1,717,792	27.52	8.53 s	0.74 s	11.54			

*We thank Sherry Li and Meiyue Shao for technical help in generating the performance numbers.

How about GPUs?

- Fine-grained parallelism
- High bandwidth for coalescent reads
- No deep cache hierarchy
- We need to oversubscribe cores for hiding latency

NVIDIA V100 "Volta" 7.8 TFLOP/s DP 16GB RAM @900 GB/s

How about GPUs?

- Fine-grained parallelism ٠
- High bandwidth for coalescent reads ٠
- No deep cache hierarchy ٠
- We need to oversubscribe cores for hiding latency ٠

thermal2 matrix from SuiteSparse, RCM ordering, 8 el/row.

7.8 TFLOP/s DP

How about GPUs?

- Fine-grained parallelism
- High bandwidth for coalescent reads
- No deep cache hierarchy
- We need to oversubscribe cores for hiding latency

topopt120 matrix from topology optimization, 67 el/row.

Anisotropic fluid flow problem n: 741, nz: 4,951

- Top-level solver iterations as quality metric.
- Few sweeps give a "better" preconditioner than ILU(0).
- Better than ILUT?

Anisotropic fluid flow problem n: 741, nz: 4,951

- Top-level solver iterations as quality metric.
- Few sweeps give a "better" preconditioner than ILU(0).
- Better than ILUT?

Anisotropic fluid flow problem n: 741, nz: 4,951

- Top-level solver iterations as quality metric.
- Few sweeps give a "better" preconditioner than ILU(0).
- Better than ILUT?

- Pattern stagnates after few sweeps.
- Pattern "more like" ILUT than ILU(0).

Test matrices

Matrix	Origin	SPD	Num. Rows	Nz	Nz/Row
ANI5	2D anisotropic diffusion	yes	$12,\!561$	86,227	6.86
ANI6	2D anisotropic diffusion	yes	50,721	$349,\!603$	6.89
ANI7	2D anisotropic diffusion	yes	$203,\!841$	$1,\!407,\!811$	6.91
APACHE1	Suite Sparse [10]	yes	$80,\!800$	$542,\!184$	6.71
APACHE2	Suite Sparse	yes	$715,\!176$	$4,\!817,\!870$	6.74
CAGE10	Suite Sparse	no	$11,\!397$	$150,\!645$	13.22
CAGE11	Suite Sparse	no	$39,\!082$	559,722	14.32
JACOBIANMATO	Fun3D fluid flow [20]	no	90,708	$5,\!047,\!017$	55.64
JACOBIANMAT9	Fun3D fluid flow	no	90,708	$5,\!047,\!042$	55.64
MAJORBASIS	Suite Sparse	no	$160,\!000$	1,750,416	10.94
topopt010	Geometry optimization [24]	yes	$132,\!300$	$8,\!802,\!544$	66.53
topopt060	Geometry optimization	yes	$132,\!300$	$7,\!824,\!817$	59.14
topopt120	Geometry optimization	yes	$132,\!300$	$7,\!834,\!644$	59.22
THERMAL1	Suite Sparse	yes	$82,\!654$	$574,\!458$	6.95
THERMAL2	Suite Sparse	yes	$1,\!228,\!045$	$8,\!580,\!313$	6.99
THERMOMECH_TC	Suite Sparse	yes	$102,\!158$	$711,\!558$	6.97
THERMOMECH_DM	Suite Sparse	yes	$204,\!316$	$1,\!423,\!116$	6.97
TMT_SYM	Suite Sparse	yes	726,713	$5,\!080,\!961$	6.99
TORSO2	Suite Sparse	no	$115,\!967$	$1,\!033,\!473$	8.91
venkat01	Suite Sparse	no	$62,\!424$	$1,\!717,\!792$	27.52

				ParILUT					
Matrix	no prec.	ILU(0)	ILUT	0	1	2	3	4	5
ANI5	882	172	78	278	161	105	84	74	66
ani6	1,751	391	127	547	315	211	168	143	131
ANI7	$3,\!499$	828	290	1,083	641	459	370	318	289
CAGE10	20	8	8	9	7	8	8	8	8
CAGE11	21	9	8	9	7	7	7	7	7
JACOBIANMATO	315	40	34	63	36	33	33	33	33
JACOBIANMAT9	539	66	65	110	60	55	54	53	53
MAJORBASIS	95	15	9	26	12	11	11	11	11
topopt010	$2,\!399$	565	303	835	492	375	348	340	339
topopt060	$2,\!852$	666	397	963	584	445	417	412	410
topopt120	2,765	668	396	959	584	445	416	408	408
TORSO2	46	10	7	18	8	6	7	7	7
venkat01	195	22	17	42	18	17	17	17	17

Convergence: CG iterations

				ParICT					
Matrix	no prec.	IC(0)	ICT	0	1	2	3	4	5
ANI5	951	226	_	297	184	136	108	93	86
ANI6	$1,\!926$	621	—	595	374	275	219	181	172
ANI7	$3,\!895$	$1,\!469$	—	$1,\!199$	753	559	455	405	377
APACHE1	3,727	368	331	$1,\!480$	933	517	321	323	323
APACHE2	$4,\!574$	$1,\!150$	785	$1,\!890$	$1,\!197$	799	766	760	754
THERMAL1	$1,\!640$	453	412	626	447	409	389	385	383
THERMAL2	$6,\!253$	1,729	$1,\!604$	$2,\!372$	$1,\!674$	$1,\!503$	$1,\!457$	$1,\!472$	$1,\!433$
THERMOMECH_DM	21	8	8	8	7	7	7	7	7
THERMOMECH_TC	21	8	7	8	7	7	7	7	7
TMT_SYM	$5,\!481$	$1,\!453$	$1,\!185$	$1,\!963$	$1,\!234$	$1,\!071$	$1,\!012$	992	$1,\!004$
topopt010	$2,\!613$	692	331	845	551	402	342	316	313
topopt060	$3,\!123$	871	—	988	749	693	$1,\!116$	_	_
topopt 120	3,062	886	_	991	837	784	$2,\!185$	_	_

We iteratively solve a linear system of the form Ax = bWhere $A \in \mathbb{R}^{n \times n}$ nonsingular and $b, x \in \mathbb{R}^{n}$.

The convergence rate typically depends on the conditioning of the linear system, which is the ratio between the largest and smallest eigenvalue.

$$\operatorname{cond}_2(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\frac{1}{\lambda_{min}}}{\frac{1}{\lambda_{max}}} = \operatorname{cond}_2(A^{-1})$$

With $M \approx A^{-1}$ we can transform the linear system into a system with a lower condition number:

> MAx = Mb (left preconditioned) AMy = b, x = My (right preconditioned)

If we now apply the iterative solver to the preconditioned system, MAx = Mb we usually get faster convergence.

We iteratively solve a linear system of the form Ax = bWhere $A \in \mathbb{R}^{n \times n}$ nonsingular and $b, x \in \mathbb{R}^{n}$.

The convergence rate typically depends on the conditioning of the linear system, which is the ratio between the largest and smallest eigenvalue.

$$\operatorname{cond}_2(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\frac{1}{\lambda_{min}}}{\frac{1}{\lambda_{max}}} = \operatorname{cond}_2(A^{-1})$$

With $M \approx A^{-1}$ we can transform the linear system into a system with a lower condition number:

MAx = Mb (left preconditioned) AMy = b, x = My (right preconditioned)

If we now apply the iterative solver to the preconditioned system, MAx = Mb we usually get faster convergence.

Assume $M = A^{-1}$, then: x = MAx = Mb. Solution right available, but computing $M = A^{-1}$ is expensive...

We iteratively solve a linear system of the form Ax = bWhere $A \in \mathbb{R}^{n \times n}$ nonsingular and $b, x \in \mathbb{R}^{n}$.

The convergence rate typically depends on the conditioning of the linear system, which is the ratio between the largest and smallest eigenvalue.

$$\operatorname{cond}_2(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\frac{1}{\lambda_{min}}}{\frac{1}{\lambda_{max}}} = \operatorname{cond}_2(A^{-1})$$

With $M \approx A^{-1}$ we can transform the linear system into a system with a lower condition number:

MAx = Mb (left preconditioned) AMy = b, x = My (right preconditioned)

If we now apply the iterative solver to the preconditioned system, MAx = Mb we usually get faster convergence.

Assume $M = A^{-1}$, then: x = MAx = Mb. Solution right available, but computing $M = A^{-1}$ is expensive...

The preconditioned system MA is rarely formed explicitly, insted M is applied implicitly: $z_{k+1} = Mr_{k+1}$

We iteratively solve a linear system of the form Ax = bWhere $A \in \mathbb{R}^{n \times n}$ nonsingular and $b, x \in \mathbb{R}^{n}$.

The convergence rate typically depends on the conditioning of the linear system, which is the ratio between the largest and smallest eigenvalue.

$$\operatorname{cond}_2(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\frac{1}{\lambda_{min}}}{\frac{1}{\lambda_{max}}} = \operatorname{cond}_2(A^{-1})$$

With $M \approx A^{-1}$ we can transform the linear system into a system with a lower condition number:

MAx = Mb (left preconditioned) AMy = b, x = My (right preconditioned)

If we now apply the iterative solver to the preconditioned system, MAx = Mb we usually get faster convergence.

Assume $M = A^{-1}$, then: x = MAx = Mb. Solution right available, but computing $M = A^{-1}$ is expensive...

The preconditioned system MA is rarely formed explicitly, insted M is applied implicitly: $z_{k+1} = Mr_{k+1}$

Instead of forming the preconditioner $M \approx A^{-1}$ explicitly and applying as $z_{k+1} = Mr_{k+1}$, Incomplete Factorization Preconditioner (ILU) try to find an approximate factorization $A \approx L \cdot U$.

We iteratively solve a linear system of the form Ax = bWhere $A \in \mathbb{R}^{n \times n}$ nonsingular and $b, x \in \mathbb{R}^{n}$.

The convergence rate typically depends on the conditioning of the linear system, which is the ratio between the largest and smallest eigenvalue.

$$\operatorname{cond}_2(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\frac{1}{\lambda_{min}}}{\frac{1}{\lambda_{max}}} = \operatorname{cond}_2(A^{-1})$$

With $M \approx A^{-1}$ we can transform the linear system into a system with a lower condition number:

MAx = Mb (left preconditioned) AMy = b, x = My (right preconditioned)

If we now apply the iterative solver to the preconditioned system, MAx = Mb we usually get faster convergence.

Assume $M = A^{-1}$, then: x = MAx = Mb. Solution right available, but computing $M = A^{-1}$ is expensive...

The preconditioned system MA is rarely formed explicitly, insted M is applied implicitly: $z_{k+1} = Mr_{k+1}$

Instead of forming the preconditioner $M \approx A^{-1}$ explicitly and applying as $z_{k+1} = Mr_{k+1}$, Incomplete Factorization Preconditioner (ILU) try to find an approximate factorization $A \approx L \cdot U$.

In the application phase, the preconditioner is only given implicitly, requiring two triangular solves:

$$z_{k+1} = Mr_{k+1}$$

$$M^{-1}z_{k+1} = r_{k+1}$$

$$L\underbrace{Uz_{k+1}}_{=:y} = r_{k+1}$$

$$\Rightarrow Ly = r_{k+1}, \quad Uz_{k+1} = y$$