
KIT – The Research University in the Helmholtz Association

Hartwig Anzt
Steinbuch Centre for Computing (SCC)

www.kit.edu

ParILUT – A	New	Parallel	 Threshold ILU
05/07/2018
Kolloquiumsvortrag in	der	Fakultät	für	Informatik

Steinbuch Centre for Computing2 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Motivation

We	are	looking	for	a	factorization-based	preconditioner	such	that	 																			.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	 in	a	highly	parallel	fashion?

A ⇡ L · U
nnz(L+ U) = nnz(A)

S(A) = {(i, j) 2 N2 : Aij 6= 0}

Steinbuch Centre for Computing3 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Exact	LU	Factorization

• Decompose	system	matrix	into	product	 																		.
• Based	on	Gaussian	elimination.
• Triangular	solves	to	solve	a	system															:

• De-Facto	standard	for	solving	dense	problems.
• What	about	sparse?	Often	significant	fill-in…

A = L · U

Ax = b

Incomplete	LU	Factorization	(ILU)

• Focused	on	restricting	fill-in	to	a
specific	sparsity	pattern			.

• For	ILU(0),				is	the	sparsity	pattern	of				.
• Works	well	for	many	problems.
• Is	this	the	best	we	can	get	for	nonzero	count?

• Fill-in	in	threshold	ILU	(ILUT)	bases				on	the
significance	of	elements	(e.g.	magnitude).

• Often	better	preconditioners	than	
level-based	ILU.

• Difficult	to	parallelize.

S

S

A

S

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that	 																			.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	 in	a	highly	parallel	fashion?

Motivation

Ly = b) y) Ux = y) x

Steinbuch Centre for Computing4 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Exact	LU	Factorization

• Decompose	system	matrix	into	product	 																		.
• Based	on	Gaussian	elimination.
• Triangular	solves	to	solve	a	system															:

• De-Facto	standard	for	solving	dense	problems.
• What	about	sparse?	Often	significant	fill-in…

A = L · U

Ax = b

Incomplete	LU	Factorization	(ILU)

• Focused	on	restricting	fill-in	to	a
specific	sparsity	pattern			.

• For	ILU(0),				is	the	sparsity	pattern	of				.
• Works	well	for	many	problems.
• Is	this	the	best	we	can	get	for	nonzero	count?

• Fill-in	in	threshold	ILU	(ILUT)	bases				on	the
significance	of	elements	(e.g.	magnitude).

• Often	better	preconditioners	than	
level-based	ILU.

• Difficult	to	parallelize.

S

S

A

S

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that	 																			.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	 in	a	highly	parallel	fashion?

Motivation

Ly = b) y) Ux = y) x

Steinbuch Centre for Computing5 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Exact	LU	Factorization

• Decompose	system	matrix	into	product	 																		.
• Based	on	Gaussian	elimination.
• Triangular	solves	to	solve	a	system															:

• De-Facto	standard	for	solving	dense	problems.
• What	about	sparse?	Often	significant	fill-in…

A = L · U

Ax = b

Incomplete	LU	Factorization	(ILU)

• Focused	on	restricting	fill-in	to	a
specific	sparsity	pattern				.

• For	ILU(0),				is	the	sparsity	pattern	of				.
• Works	well	for	many	problems.
• Is	this	the	best	we	can	get	for	nonzero	count?

• Fill-in	in	threshold	ILU	(ILUT)	bases				on	the
significance	of	elements	(e.g.	magnitude).

• Often	better	preconditioners	than	
level-based	ILU.

• Difficult	to	parallelize.

S

S

A

S

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that	 																			.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	 in	a	highly	parallel	fashion?

Motivation

Ly = b) y) Ux = y) x

L 2 Rn⇥n

U 2 Rn⇥n

Lij = Uij = 0 8(i, j) /2 S

lower	(unit-)	triangular,	sparse.

upper	triangular,	sparse.

R = L� U, Rij = 0 8(i, j) 2 S
.

.

Steinbuch Centre for Computing6 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Exact	LU	Factorization

• Decompose	system	matrix	into	product	 																		.
• Based	on	Gaussian	elimination.
• Triangular	solves	to	solve	a	system															:

• De-Facto	standard	for	solving	dense	problems.
• What	about	sparse?	Often	significant	fill-in…

A = L · U

Ax = b

Incomplete	LU	Factorization	(ILU)

• Focused	on	restricting	fill-in	to	a
specific	sparsity	pattern				.

• For	ILU(0),				is	the	sparsity	pattern	of				.
• Works	well	for	many	problems.
• Is	this	the	best	we	can	get	for	nonzero	count?

• Fill-in	in	threshold	ILU	(ILUT)	bases				on	the
significance	of	elements	(e.g.	magnitude).

• Often	better	preconditioners	than	
level-based	ILU.

• Difficult	to	parallelize.

S

S

A

S

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that	 																			.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	 in	a	highly	parallel	fashion?

Motivation

Ly = b) y) Ux = y) x

Steinbuch Centre for Computing7 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Exact	LU	Factorization

• Decompose	system	matrix	into	product	 																		.
• Based	on	Gaussian	elimination.
• Triangular	solves	to	solve	a	system															:

• De-Facto	standard	for	solving	dense	problems.
• What	about	sparse?	Often	significant	fill-in…

A = L · U

Ax = b

Incomplete	LU	Factorization	(ILU)

• Focused	on	restricting	fill-in	to	a
specific	sparsity	pattern				.

• For	ILU(0),				is	the	sparsity	pattern	of				.
• Works	well	for	many	problems.
• Is	this	the	best	we	can	get	for	nonzero	count?

• Fill-in	in	threshold	ILU	(ILUT)	bases				on	the
significance	of	elements	(e.g.	magnitude).

• Often	better	preconditioners	than	
level-based	ILU.

• Difficult	to	parallelize.

S

S

A

S

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that	 																			.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	 in	a	highly	parallel	fashion?

Motivation

Ly = b) y) Ux = y) x

Steinbuch Centre for Computing8 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Motivation

We	are	looking	for	a	factorization-based	preconditioner	such	that	 																			.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	 in	a	highly	parallel	fashion?

Rethink	the	overall	strategy!

• Use	a	parallel	iterative	process	to	generate	factors.

• The	preconditioner	should	have	a	moderate	number	of	nonzero	elements,
but	we	don’t	care	too	much	about	 intermediate	data.

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 																				is	a	“good”	approximation.

3. Maybe	change	some	locations	in	favor	of	locations	that	result	 in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

A ⇡ L · U
nnz(L+ U) = nnz(A)

Steinbuch Centre for Computing9 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

AR = L U⇥ILU	residual -

Steinbuch Centre for Computing10 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA

Steinbuch Centre for Computing11 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA

Steinbuch Centre for Computing12 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

Steinbuch Centre for Computing13 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA
=

Residual:

Steinbuch Centre for Computing14 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations
1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

nnz(A� L · U)
nnz(L+ U)

• This	is	an	optimization	problem	with																															equations
and																									variables.

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA
=

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

SSparsity	pattern

Steinbuch Centre for Computing15 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations
1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

• This	is	an	optimization	problem	with																															equations	
and																									variables.

• We	may	want	to	compute	the	values	in										such	that																																										,
the	approximation	being	exact	in	the	 locations	included	in				,	but	not	outside!

L,U

=

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

R = A� L · U = 0|S

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

nnz(L+ U)equations
variablesnnz(L+ U)

S

nnz(A� L · U)
nnz(L+ U)

SSparsity	pattern

Steinbuch Centre for Computing16 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations
1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

• This	is	an	optimization	problem	with																															equations	
and																									variables.

• We	may	want	to	compute	the	values	in										such	that																																										,
the	approximation	being	exact	in	the	 locations	included	in				,	but	not	outside!

• This	is	the	underlying	idea	of	Edmond	Chow’s	parallel	ILU	algorithm1:	

L,U

1Chow	and	Patel.	“Fine-grained	Parallel	Incomplete	LU	Factorization”. In:	SIAM	J.	on	Sci.	Comp.	(2015).

R = A� L · U = 0|S
S

nnz(A� L · U)
nnz(L+ U)

L · U = A|S) F (lij , uij) =

(
1

ujj

⇣
aij �

Pj�1
k=1 likukj

⌘
, i > j

aij �
Pi�1

k=1 likukj , i  j

Steinbuch Centre for Computing17 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations
1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

• This	is	an	optimization	problem	with																															equations	
and																									variables.

• We	may	want	to	compute	the	values	in										such	that																																										,
the	approximation	being	exact	in	the	 locations	included	in				,	but	not	outside!

• This	is	the	underlying	idea	of	Edmond	Chow’s	parallel	ILU	algorithm1:	

• Converges	in	the	asymptotic	sense	towards	 incomplete	factors	
such	that	

L,U

1Chow	and	Patel.	“Fine-grained	Parallel	Incomplete	LU	Factorization”. In:	SIAM	J.	on	Sci.	Comp.	(2015).

R = A� L · U = 0|S
S

nnz(A� L · U)
nnz(L+ U)

R = A� L · U = 0|S
L,U

L · U = A|S) F (lij , uij) =

(
1

ujj

⇣
aij �

Pj�1
k=1 likukj

⌘
, i > j

aij �
Pi�1

k=1 likukj , i  j

Steinbuch Centre for Computing18 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations
1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

• This	is	an	optimization	problem	with																															equations	
and																									variables.

• We	may	want	to	compute	the	values	in										such	that																																										,
the	approximation	being	exact	in	the	 locations	included	in				,	but	not	outside!

• This	is	the	underlying	idea	of	Edmond	Chow’s	parallel	ILU	algorithm1:	

• We	may	not	need	high	accuracy	here,	
because	we	may	change	the	pattern	again…

• One	single	fixed-point	sweep.

L,U R = A� L · U = 0|S
S

nnz(A� L · U)
nnz(L+ U)

1Chow	and	Patel.	“Fine-grained	Parallel	Incomplete	LU	Factorization”. In:	SIAM	J.	on	Sci.	Comp.	(2015).

L · U = A|S) F (lij , uij) =

(
1

ujj

⇣
aij �

Pj�1
k=1 likukj

⌘
, i > j

aij �
Pi�1

k=1 likukj , i  j

Steinbuch Centre for Computing19 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations
1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

• Comparing	sparsity	patterns	extremely	difficult.
• Maybe	use	the	ILU	residual	as	convergence	check.

=

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

Steinbuch Centre for Computing20 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations

A ⇡ L · U

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.

Steinbuch Centre for Computing21 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations

A ⇡ L · U

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A

1Saad.	“Iterative	Methods	for	Sparse	Linear	Systems,	2nd Edition”. (2003).

• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.
• Then,	the	approximation	will	be	exact	for	all	locations

and	nonzero	 in	locations																																																																																1.	S1 = (S(A) [S(L0 · U0)) \ S(L0 + U0)
S0 = S(L0 + U0)

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA
=

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

Steinbuch Centre for Computing22 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ? ? ?

? ? ?
? ? ? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ?

? ?
?

1

CCCCCCA
=

0

BBBBBB@

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

A ⇡ L · U

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A

S1 = (S(A) [S(L0 · U0)) \ S(L0 + U0)

• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.
• Then,	the	approximation	will	be	exact	for	all	locations

and	nonzero	 in	locations																																																																																1.	

• Adding	all	these	locations	(level-fill!)	might	be	good	idea…

S0 = S(L0 + U0)

Steinbuch Centre for Computing23 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations

A ⇡ L · U

A

S1 = (S(A) [S(L0 · U0)) \ S(L0 + U0)

• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.
• Then,	the	approximation	will	be	exact	for	all	locations

and	nonzero	 in	locations																																																																																1.	

• Adding	all	these	locations	(level-fill!)	might	be	good	idea, but	adding	these	
will	again	generate	new	nonzero	residuals

S0 = S(L0 + U0)

S2 = (S(A) [S(L1 · U1)) \ S(L1 + U1)

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ? ? ?

? ? ?
? ? ? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ?

? ?
?

1

CCCCCCA
=

0

BBBBBB@

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

Steinbuch Centre for Computing24 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Considerations

A ⇡ L · U

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

• At	some	point	we	should	remove	some	locations	again,	e.g.	the	smallest	elements,
and	start	over	looking	at	locations																																	…R = A� Lk · Uk

Steinbuch Centre for Computing25 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.

ParILUT

Steinbuch Centre for Computing26 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

ParILUT :	Parallelism	inside	the	blocks

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Steinbuch Centre for Computing27 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Parallelism	inside	the	blocks:	Fixed-point	sweeps

Fixed-point	sweeps	approximate	values	in	ILU	factors	and	residual1:

• Inherently	parallel	operation.
• Elements	can	be	updated	asynchronously.

• We	can	expect	100%	parallel	efficiency	if	
number	of	cores	<	number	of	elements

• Residual	norm	is	a	global	reduction.

1Chow	and	Patel.	“Fine-grained	Parallel	Incomplete	LU	Factorization”. In:	SIAM	J.	on	Sci.	Comp.	(2015).

bilinear	fixed-point	iteration	can	be	parallelized	by	elements	

F (lij , uij) =

(
1

ujj

⇣
aij �

Pj�1
k=1 likukj

⌘
, i > j

aij �
Pi�1

k=1 likukj , i  j

Steinbuch Centre for Computing28 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Parallelism	inside	the	blocks:	Candidate	search

S⇤ = (S(A) [S(L · U)) \ S(L+ U)

sparse	matrix	product

sparse	matrix	sum

• Combination	of	sparse	matrix	product	and
sparse	matrix	sums.

• Building	blocks	available	in	SparseBLAS.
• Blocks	can	be	combined	into	one	kernel	for	

higher	(memory)	efficiency.
• Kernel	can	be	parallelized	by	rows.

• Cost	heavily	dependent	on	sparsity	pattern.

• Kernel	performance	bound	by	memory	bandwidth.

sparse	matrix	sum

Identify	locations	that	are	symbolically	nonzero:

Steinbuch Centre for Computing29 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Parallelism	inside	the	blocks:	Selecting	thresholds

A	threshold	separating	the	smallest	elements	is	needed	
for	removing	insignificant	locations	and	keeping	sparsity.

• Standard	approach:	sort	/	selection	algorithms
• High	computational	cost
• Memory-intensive
• Hard	to	parallelize

• Thresholds	do	not	need	to	be	exact:	
• Inaccurate	thresholds	result	in	a	few	additional	/	less	elements.
• We	can	use	sampling	to	get	reasonable	approximations.
• Multiple	sampling-based	selection	runs	allow to	generate	

thresholds	of	reasonable	quality	in	parallel.

• Is	this	appropriate	for	many-core	architectures	
with	5K	threads	executing	simultaneously?

Steinbuch Centre for Computing30 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Threshold	selection	on	parallel	architectures

• SelectionSort (comparisons,											element	swaps)
• QuickSelect (average											comparisons,											element	swaps)
• Floyd-Rivest algorithm	()
• IntroSelect (worst	case											comparisons,											element	swaps)

John	D.	McCaplin (TACC)

Selection	algorithms	traditionally	based	on	re-arranging	elements	in	memory.

O(n)O(n2)
O(n) O(n)

O(n) O(n)
n+min(k, n� k) +O(

p
n)

• Compute	power	(#FLOPs)	grows	much	faster	than	
memory	bandwidth.

• Data-rearranging	selection	algorithms	become	inefficient.

”Operations	 are	free,	memory	access	is	what	counts.”

64bit	read,
1	FLOP	

Steinbuch Centre for Computing31 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Threshold	selection	on	parallel	architectures:	StreamSelect

Rethink	the	overall	strategy!

• Primary	goal:	reduce	the	memory	traffic.
• Account	for	high	core	counts,	each	having	a	set	of	registers.
• Assume	“nice”	distribution	of	values	(~uniform).
• Accept	some	inaccuracy	in	the	generated	threshold	(approximation).

1. Find	the	largest	and	smallest	elements	to	get	the	data	range.

2. Generate	a	fine	grid	of	thresholds,	distribute them	to	the	cores.
3. Stream	all	data	one	single	time.
4. Each	core	handles	a	set	of	thresholds	 and	counts	how	many	

elements are	larger/smaller.
5. Select	the	threshold	with	the	element	count	closest	to	the	

target	value.

NVIDIA	V100	“Volta”
7.8	TFLOP/s	DP
16GB	RAM	@900	GB/s

80	Multiprocessors,	each	with	64	FP32	cores
[oversubscribe	with	threads	to	hide	latency]

Steinbuch Centre for Computing32 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Threshold	selection	on	parallel	architectures:	StreamSelect

Rethink	the	overall	strategy!

• Primary	goal:	reduce	the	memory	traffic.
• Account	for	high	core	counts,	each	having	a	set	of	registers.
• Assume	“nice”	distribution	of	values	(~uniform).
• Accept	some	inaccuracy	in	the	generated	threshold	(approximation).

1. Find	the	largest	and	smallest	elements	to	get	the	data	range.

2. Generate	a	fine	grid	of	thresholds,	distribute them	to	the	cores.
3. Stream	all	data	one	single	time.
4. Each	core	handles	a	set	of	thresholds	 and	counts	how	many	

elements are	larger/smaller.
5. Select	the	threshold	with	the	element	count	closest	to	the	

target	value.

NVIDIA	V100	“Volta”
7.8	TFLOP/s	DP
16GB	RAM	@900	GB/s

80	Multiprocessors,	each	with	64	FP32	cores
[oversubscribe	with	threads	to	hide	latency]

Run	5120	threads	(bind	to	cores)	each	a	few	thresholds:

32 thresholds gives mesh granularity of 6.1035e-06

0 5 10 15 20 25 30 35

Thresholds per thread

0

10

20

30

40

R
u

n
tim

e

Linear
StreamSelect

Steinbuch Centre for Computing33 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

0 5 10 15 20 25 30 35

Thresholds per thread

0

10

20

30

40

R
u

n
tim

e

Linear
StreamSelect

Threshold	selection	on	parallel	architectures:	StreamSelect

Rethink	the	overall	strategy!

• Primary	goal:	reduce	the	memory	traffic.
• Account	for	high	core	counts,	each	having	a	set	of	registers.
• Assume	“nice”	distribution	of	values	(~uniform).
• Accept	some	inaccuracy	in	the	generated	threshold	(approximation).

1. Find	the	largest	and	smallest	elements	to	get	the	data	range.

2. Generate	a	fine	grid	of	thresholds,	distribute them	to	the	cores.
3. Stream	all	data	one	single	time.
4. Each	core	handles	a	set	of	thresholds	 and	counts	how	many	

elements are	larger/smaller.
5. Select	the	threshold	with	the	element	count	closest	to	the	

target	value.

NVIDIA	V100	“Volta”
7.8	TFLOP/s	DP
16GB	RAM	@900	GB/s

On	a	V100	GPU:	80	Multiprocessors	
each	with	32	FP64	cores	

64	FP32	cores
[oversubscribe	with	threads	to	hide	latency]

Run	5120	threads	(bind	to	cores)	each	a	few	thresholds:

32 thresholds gives mesh granularity of 6.1035e-06

• Set	size	m,	subset	size	n*
• For	uniform	distribution:	 quality	~	mesh	granularity.

• Runtime	increases	linear	with	set	size.
• Runtime	independent	of	subset	 size.

10
3

10
4

10
5

10
6

10
7

10
8

Set size m

10
-4

10
-2

10
0

10
2

R
u
n
ti
m

e

103 104 105 106 107 108

Subset size n*

10-10

10-5

100

D
e
vi

a
tio

n

(n-n*) / m

Steinbuch Centre for Computing34 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Is	this	a	future-oriented	algorithm?

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Steinbuch Centre for Computing35 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Is	this	a	future-oriented	algorithm?

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Bulk-Synchronous	 Algorithm!

Steinbuch Centre for Computing36 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Is	this	a	future-oriented	algorithm?

DependenciesInterleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Bulk-Synchronous	 Algorithm!

Steinbuch Centre for Computing37 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Is	this	a	future-oriented	algorithm?

DependenciesInterleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Bulk-Synchronous	 Algorithm!

Steinbuch Centre for Computing38 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Is	this	a	future-oriented	algorithm?

DependenciesInterleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Bulk-Synchronous	 Algorithm!

Steinbuch Centre for Computing39 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Is	this	a	future-oriented	algorithm?

DependenciesInterleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.
Parallelism	inside	the	building	blocks.

Bulk-Synchronous	 Algorithm!

Steinbuch Centre for Computing40 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Strong	dependency	 –we	can	not	start	before	finished.

Is	this	a	future-oriented	algorithm?

Steinbuch Centre for Computing41 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Strong	dependency	 –we	can	not	start	before	finished.
Weak	dependency	 – if	we	start	before:	+/- few	nonzeros.

Is	this	a	future-oriented	algorithm?

Steinbuch Centre for Computing42 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Strong	dependency	 –we	can	not	start	before	finished.
Weak	dependency	 – if	we	start	before:	+/- few	nonzeros.
We	can	already	start	with	the	next	iteration.

Is	this	a	future-oriented	algorithm?

Steinbuch Centre for Computing43 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Excellent	candidate	for	hybrid	hardware?
Asynchronous	 execution?

GPU?

Strong	dependency	 –we	can	not	start	before	finished.
Weak	dependency	 – if	we	start	before:	+/- few	nonzeros.
We	can	already	start	with	the	next	iteration.

Is	this	a	future-oriented	algorithm?

Steinbuch Centre for Computing44 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

ParILUT – A	New	Parallel	Threshold ILU

• Hybrid	ParILUT version	utilizing	GPU	and	CPU,	
overlapping	communication	&	computation.

• Asynchronous version	relaxing	dependencies.

• Use	a	different	sparsity-pattern	generator:	
• Randomized?
• Machine	learning	techniques?

• Increasing	fill-in	towards	“full”	factorization.

• ParILUT routines	available	in	MAGMA-sparse	– they	will	be	in	Ginkgo!

Helmholtz Impuls und Vernetzungsfond
VH-NG-1241

Next	steps:

This	research	is	in	cooperation	with	Edmond	Chow	(GaTech)	and	Jack	Dongarra (University	of	Tennessee).

Slides	available:

Steinbuch Centre for Computing45 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Scalability

0 10 20 30 40 50 60 70

Number of Threads

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p

CSC CSR
Candidates
Residuals
ILU-norm
CSR CSC
Add
Sweep1
Select2Rm
Remove
Sweep2

10 20 30 40 50 60

Number of Threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
u
n
tim

e
 f
ra

ct
io

n

CSC CSR
Candidates
Residuals
ILU-norm
Select
Add
Sweeps
Remove

thermal2matrix	from	SuiteSparse,	RCM	ordering,	8	el/row.

Intel	Xeon Phi 7250	“Knights Landing”
68	cores	@1.40	GHz,	
16GB	MCDRAM	@490	GB/s

• Building	blocks	scale	with	15%	- 100%	parallel	efficiency.
• Transposition	and	sort	are	the	bottlenecks.
• Overall	speedup	~35x	when	using	68	KNL	cores.

Steinbuch Centre for Computing46 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Intel	Xeon Phi 7250	“Knights Landing”
68	cores	@1.40	GHz,	
16GB	MCDRAM	@490	GB/s

Scalability

10 20 30 40 50 60

Number of Threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
u
n
tim

e
 f
ra

ct
io

n

CSC CSR
Candidates
Residuals
ILU-norm
Select
Add
Sweeps
Remove

0 10 20 30 40 50 60 70

Number of Threads

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p

CSC CSR
Candidates
Residuals
ILU-norm
CSR CSC
Add
Sweep1
Select2Rm
Remove
Sweep2

topopt120matrix	from	topology	optimization,	67	el/row.

• Building	blocks	scale	with	15%	- 100%	parallel	efficiency.
• Dominated	by	candidate	search.
• Overall	speedup	~52x	when	using	68	KNL	cores.

Steinbuch Centre for Computing47 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Intel	Xeon Phi 7250	“Knights Landing”
68	cores	@1.40	GHz,	
16GB	MCDRAM	@490	GB/s

Performance

Matrix Origin Rows Nonzeros Ratio SuperLU ParILUT ParICT

ani7	 2D	Anisotropic	Diffusion	 												 203,841 1,407,811 6.91 10.48	s	 0.45	s	 23.34 0.30	s	 35.16

apache2	 Suite	Sparse	Matrix	Collect.									 715,176 4,817,870 6.74 62.27	s	 1.24	s	 50.22 0.65	s	 95.37

cage11	 Suite	Sparse	Matrix	Collect.									 39,082 559,722 14.32 60.89	s 0.54	s	 112.56 --

jacobianMat9	 Fun3D	Fluid	 Flow	Problem													 90,708 5,047,042 55.64 153.84	s	 7.26	s	 21.19 --

thermal2	 Thermal	Problem	(Suite Sp.) 1,228,045 8,580,313 6.99 91.83	s	 1.23	s	 74.66 0.68	s	 134.25

tmt_sym Suite	Sparse	Matrix	Collect.									 726,713 5,080,961 6.97 53.42	s	 0.70	s	 76.21 0.41	s	 131.25

topopt120	 Geometry Optimization 132,300 8,802,544 66.53 44.22	s	 14.40	s	 3.07 8.24	s	 5.37

torso2	 Suite	Sparse	Matrix	Collect.									 115,967 1,033,473 8.91 10.78	s	 0.27	s	 39.92 --

venkat01	 Suite	Sparse	Matrix	Collect.									 62,424 1,717,792 27.52 8.53	s	 0.74	s	 11.54 --

Runtime	of	5	ParILUT /	ParICT steps	and	speedup over	SuperLU ILUT*.

*We	thank	Sherry	Li	and	Meiyue Shao	for	technical	help	in	generating	the	performance	numbers.	

Steinbuch Centre for Computing48 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

How	about	GPUs?

• Fine-grained	parallelism
• High	bandwidth	 for	coalescent	reads
• No	deep	cache	hierarchy

• We	need	to	oversubscribe	cores	for	hiding	latency

NVIDIA	V100	“Volta”
7.8	TFLOP/s	DP
16GB	RAM	@900	GB/s

Steinbuch Centre for Computing49 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

How	about	GPUs?

• Fine-grained	parallelism
• High	bandwidth	 for	coalescent	reads
• No	deep	cache	hierarchy

• We	need	to	oversubscribe	cores	for	hiding	latency

Tra
ns

Can
d

Res
Sor

t

Tra
ns

Add

Swee
p1

Thr
es

Rem
v

Swee
p2

-0.1

-0.05

0

0.05

0.1

N
V

ID
IA

 P
1
0
0
 G

P
U

 I
n
te

l H
a
sw

e
ll

2
0
c

thermal2matrix	from	SuiteSparse,	RCM	ordering,	8	el/row.

Ru
nt
im
e	
[s
]

NVIDIA	V100	“Volta”
7.8	TFLOP/s	DP
16GB	RAM	@900	GB/s

Steinbuch Centre for Computing50 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

How	about	GPUs?

• Fine-grained	parallelism
• High	bandwidth	 for	coalescent	reads
• No	deep	cache	hierarchy

• We	need	to	oversubscribe	cores	for	hiding	latency
topopt120matrix	from	topology	optimization,	67	el/row.

Tra
ns

C
an

d
R
es

Sor
t

Tra
ns

Add

Sw
ee

p1

Thr
es

R
em

v

Sw
ee

p2
-1

-0.5

0

0.5

1

N
V

ID
IA

 P
1
0
0
 G

P
U

 I
n
te

l H
a
sw

e
ll

2
0
c

Ru
nt
im
e	
[s
]

NVIDIA	V100	“Volta”
7.8	TFLOP/s	DP
16GB	RAM	@900	GB/s

Steinbuch Centre for Computing51 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

• Top-level	solver	iterations	as	quality	metric.
• Few	sweeps	give	a	“better”	preconditioner	than	ILU(0).
• Better	than	ILUT?

ParILUT quality

0 2 4 6 8 10

Number of ParICT steps (2 sweeps per step)

0

10

20

30

40

50

60

70

80

C
G

 I
te

ra
tio

n
s

IC(0)
ICT
ParICT

Anisotropic	fluid	flow	problem
n:	741,	nz:	4,951

Steinbuch Centre for Computing52 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

• Top-level	solver	iterations	as	quality	metric.
• Few	sweeps	give	a	“better”	preconditioner	than	ILU(0).
• Better	than	ILUT?

ParILUT quality

0 2 4 6 8 10

Number of ParICT steps (2 sweeps per step)

0

10

20

30

40

50

60

70

80

C
G

 I
te

ra
tio

n
s

IC(0)
ICT
ParICT

0 500 1000 1500

ILU(0) Pattern discrepancy ILUT

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r

o
f

P
a

rI
C

T
 s

te
p

s
(2

 s
w

e
e

p
s

p
e

r
st

e
p

)

Anisotropic	fluid	flow	problem
n:	741,	nz:	4,951

Steinbuch Centre for Computing53 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Anisotropic	fluid	flow	problem
n:	741,	nz:	4,951

• Top-level	solver	iterations	as	quality	metric.
• Few	sweeps	give	a	“better”	preconditioner	than	ILU(0).
• Better	than	ILUT?

ParILUT quality

• Pattern	stagnates	after	few	sweeps.
• Pattern	“more	like”	ILUT	than	ILU(0).

0 2 4 6 8 10

Number of ParICT steps (2 sweeps per step)

0

10

20

30

40

50

60

70

80

C
G

 I
te

ra
tio

n
s

IC(0)
ICT
ParICT

0 500 1000 1500

ILU(0) Pattern discrepancy ILUT

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r

o
f

P
a

rI
C

T
 s

te
p

s
(2

 s
w

e
e

p
s

p
e

r
st

e
p

)

ParICT

Steinbuch Centre for Computing54 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Test	matrices

Steinbuch Centre for Computing55 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Convergence:	GMRES	iterations

Steinbuch Centre for Computing56 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Convergence:	CG	iterations

Steinbuch Centre for Computing57 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Preconditioning

Ax = b

We	iteratively	solve a	linear	system	of	the	form												
Where																				nonsingular	and																	.

The	convergence	rate	typically	depends	on	the
conditioning of	the	 linear	system,	which	is	the	ratio	
between	the	largest	and	smallest	eigenvalue.

With																				we	can	transform the	linear	system	into	
a	system	with	a	lower	condition	number:

If	we	now	apply	the	 iterative	solver	to	the	preconditioned
system,																						 we	usually	get	faster	convergence.	

A 2 Rn⇥n
b, x 2 Rn

MAx = Mb (left preconditioned)

AMy = b, x = My (right preconditioned)

cond2(A) =

�
max

�
min

=

1
�

min

1
�

max

= cond2(A
�1

)

MAx = Mb

M ⇡ A�1

Steinbuch Centre for Computing58 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Preconditioning

Assume	 ,	then:	 																																	.
Solution	right	available,	but	computing

is	expensive…

M = A�1
x = MAx = Mb

M = A�1

Ax = b

We	iteratively	solve a	linear	system	of	the	form												
Where																				nonsingular	and																	.

The	convergence	rate	typically	depends	on	the
conditioning of	the	 linear	system,	which	is	the	ratio	
between	the	largest	and	smallest	eigenvalue.

With																				we	can	transform the	linear	system	into	
a	system	with	a	lower	condition	number:

If	we	now	apply	the	 iterative	solver	to	the	preconditioned
system,																						 we	usually	get	faster	convergence.	

A 2 Rn⇥n
b, x 2 Rn

MAx = Mb (left preconditioned)

AMy = b, x = My (right preconditioned)

cond2(A) =

�
max

�
min

=

1
�

min

1
�

max

= cond2(A
�1

)

MAx = Mb

M ⇡ A�1

Steinbuch Centre for Computing59 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Preconditioning

Assume	 ,	then:	 																																	.
Solution	right	available,	but	computing

is	expensive…

The	preconditioned	system									is	rarely	formed	explicitely,
insted							is	applied	implicitely:

M = A�1
x = MAx = Mb

M = A�1

Ax = b

We	iteratively	solve a	linear	system	of	the	form												
Where																				nonsingular	and																	.

The	convergence	rate	typically	depends	on	the
conditioning of	the	 linear	system,	which	is	the	ratio	
between	the	largest	and	smallest	eigenvalue.

With																				we	can	transform the	linear	system	into	
a	system	with	a	lower	condition	number:

If	we	now	apply	the	 iterative	solver	to	the	preconditioned
system,																						 we	usually	get	faster	convergence.	

A 2 Rn⇥n
b, x 2 Rn

MAx = Mb (left preconditioned)

AMy = b, x = My (right preconditioned)

cond2(A) =

�
max

�
min

=

1
�

min

1
�

max

= cond2(A
�1

)

MAx = Mb

M ⇡ A�1

M zk+1 = Mrk+1

MA

Steinbuch Centre for Computing60 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Preconditioning

Assume	 ,	then:	 																																	.
Solution	right	available,	but	computing

is	expensive…

The	preconditioned	system									is	rarely	formed	explicitely,
insted							is	applied	implicitely:

Instead	of	forming	the	preconditioner	 																 explicitly	
and	applying	as																														,	
Incomplete	Factorization	Preconditioner	(ILU)	try	to	
find	an	approximate	factorization																			.

M = A�1
x = MAx = Mb

M = A�1

zk+1 = Mrk+1

M ⇡ A�1

A ⇡ L · U

Ax = b

We	iteratively	solve a	linear	system	of	the	form												
Where																				nonsingular	and																	.

The	convergence	rate	typically	depends	on	the
conditioning of	the	 linear	system,	which	is	the	ratio	
between	the	largest	and	smallest	eigenvalue.

With																				we	can	transform the	linear	system	into	
a	system	with	a	lower	condition	number:

If	we	now	apply	the	 iterative	solver	to	the	preconditioned
system,																						 we	usually	get	faster	convergence.	

A 2 Rn⇥n
b, x 2 Rn

MAx = Mb (left preconditioned)

AMy = b, x = My (right preconditioned)

cond2(A) =

�
max

�
min

=

1
�

min

1
�

max

= cond2(A
�1

)

MAx = Mb

M ⇡ A�1

M zk+1 = Mrk+1

MA

Steinbuch Centre for Computing61 05/07/2018 Hartwig	 Anzt:	ParILUT – A	new parallel	threshold ILU

Preconditioning

Assume	 ,	then:	 																																	.
Solution	right	available,	but	computing

is	expensive…

The	preconditioned	system									is	rarely	formed	explicitely,
insted							is	applied	implicitely:

Instead	of	forming	the	preconditioner	 																 explicitly	
and	applying	as																														,	
Incomplete	Factorization	Preconditioner	(ILU)	try	to	
find	an	approximate	factorization																			.

In	the	application	phase,	the	preconditioner	 is	only	
given	implicitly,	requiring	two	triangular	solves:

M = A�1
x = MAx = Mb

M = A�1

zk+1 = Mrk+1

M�1zk+1 = rk+1

LUzk+1| {z }
=:y

= rk+1

)Ly = rk+1, Uzk+1 = y

zk+1 = Mrk+1

M ⇡ A�1

Ax = b

We	iteratively	solve a	linear	system	of	the	form												
Where																				nonsingular	and																	.

The	convergence	rate	typically	depends	on	the
conditioning of	the	 linear	system,	which	is	the	ratio	
between	the	largest	and	smallest	eigenvalue.

With																				we	can	transform the	linear	system	into	
a	system	with	a	lower	condition	number:

If	we	now	apply	the	 iterative	solver	to	the	preconditioned
system,																						 we	usually	get	faster	convergence.	

A 2 Rn⇥n
b, x 2 Rn

MAx = Mb (left preconditioned)

AMy = b, x = My (right preconditioned)

cond2(A) =

�
max

�
min

=

1
�

min

1
�

max

= cond2(A
�1

)

MAx = Mb

M ⇡ A�1

MA
M zk+1 = Mrk+1

A ⇡ L · U

