
JLESC April 2019 - Knoxville

Improved Convolution Implementations on
NVIDIA GPUs

Marc Jordà, Pedro Valero-Lara,
Antonio J. Peña

www.bsc.es

Introduction

2

AlexNet Structure

● Interest in neural networks resurged in recent years
○ Deep Neural Networks (DNNs)

● Convolutional Neural Networks (CNNs)
○ High accuracy in image classification benchmarks
○ Several conv algorithms (Direct, GEMM, FFT, Winograd, …)

● Our convolution implementation for NVIDIA GPUs
○ Based on direct application of the convolution formula
○ Efficiently exploit incore memories and global memory accesses

Convolutional Neural Networks (CNNs)

3

● Inclusion of convolutional layers

● Convolutional layer

○ Weights are grouped in filters
○ Filters are shared by several output elements

○ Uses convolution operations as part of its

computation

● Advantage over fully-connected layers

○ Storage and computational cost does not

depend on input or output size

- Number of filters and its size are a design choice

○ Translation invariance

- Filters “see” different parts of the input

Fully-connected layer

Weights

Input (flattened)

Output

(flattened)

Outi = ActivationFunc(Sumj=0..#In(Wi,j · Inj) + bias)

=*

*

*

Convolutional layer

Output = ActivationFunc(ConvolutionOps(Input,

Filters) + bias)

Convolution Operation - Example

4

Input (5x5x3)

* =

Filters (3x3x3)

Output (3x3x2)

● Example convolution with 1 input and 2 filters
○ 1 input of 5x5x3
○ 2 filters of 3x3x3
○ Stride X and Y = 1

1 output of 3x3x2 (output Z is the number of filters)

Output elements are the scalar product of
one filter and a subvolume of the input

The convolutions of a convolutional layer expose two levels of data reuse

Design – Data reuse

5

At the layer level
● A batch of inputs are convolved with all the layer filters

○ Each filter is used with all the inputs
○ Each input is used with all the filters

Inputs
Filters Outputs

* =

The convolutions of a convolutional layer expose two levels of data reuse

Design – Data reuse

6

At the convolution level
● Input elements reuse

○ Not constant: input z-rows in the center are reused more
● Filter elements reuse

○ Each filter z-row is reused the same amount of times
○ Inputs are usually larger => more reuse of filter z-rows
○ If stride = 1 (common in CNNs), reuse is done by

contiguous subvolume

At the layer level
● A batch of inputs are convolved with all the layer filters

○ Each filter is used with all the inputs
○ Each input is used with all the filters

Filter elements reuse: Input elements that reuse two
example Z-rows of the filter (in matching colors) in a
convolution with stride=1

Design – Data layout

7

Considering data layout + data reuse + coalescing

If we have
● NCHW layout
● Warps mapped along W dimension

● Stride = 1

We get
● Good coalescing loading inputs

○ Fully-coalesced warps

○ Some warps may have a gap (overhead similar to misaligned
accesses)

○ No need for layout transformations before the actual computation

● Threads in a warp reuse filter data

○ Exploit shared mem and shuffle instructions

○ Faster mem access

Example with warp size = 4

Computation is split into 2 stages:

Design – Algorithm

8

1 .- Compute the scalar products between input & filter Z-rows
required for the convolutions
● Exploits the reuse of filter elements in shared memory and

registers

0

0
0

0

Scalar products

Computation is split into 2 stages:

Design – Algorithm

9

1 .- Compute the scalar products between input & filter Z-rows
required for the convolutions

● Exploits the reuse of filter elements in shared memory and
registers

2 .- Add the partial results matrices from the 1st stage to obtain each
output X-Y plane.

● Each output element is the sum of one element from each
partial results matrix

● Not necessary for convolutions with 1x1 filters
○ Output of 1st stage has to be stored in the correct layout

0

Evaluation dataset
● 602 convolution configurations (X & Y sizes, #filters, depth), from

○ AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19

● Several input batch sizes: 1, 8, 16, 32, 64, 128, 256
● Total 4000+ configurations
● Single-precision floating point
● Average of 9 executions

Experimental platform
● IBM POWER9 server
● V100-SXM2 (Volta) GPU
● Red Hat Enterprise Linux Server 7.4
● CUDA 9.2
● cuDNN 7.1

Experimental Evaluation

10

Results

11

● Overall, our implementation is faster than the best
cuDNN variant in 8.31% of the tested configurations

○ Mainly in smaller batch sizes (up to 16)

○ DL frameworks pick the best algorithm for each
convolutional layer

● Insights from performance profiling
○ Our design better exploits thread block-level

parallelism for small batch sizes

○ Too many thread blocks negatively impact our
performance for large batch sizes

○ Compute & memory access units not fully utilized

2

1

0

Speedup vs. Best cuDNN variant

Our implementation is competitive for certain parameter intervals
● Convolutions with small batch sizes
● Speedups of up to 2.29x

Improvements currently in progress
● Support for Tensor Cores for FP16 convolutions

○ Algorithm has to be adapted to the Tensor Cores matrix-matrix multiplication API
● Obtain a better work distribution among thread blocks

○ Work-fusion (e.g. thread coarsening) optimizations
○ Compute units utilization can increase (feedback from profiler)
○ Improve performance for larger batch and filter sizes

Conclusions & Future work

12

JLESC April 2019 - Knoxville

Improved Convolution Implementations on
NVIDIA GPUs

Marc Jordà, Pedro Valero-Lara,
Antonio J. Peña

www.bsc.es

For further info:
marc.jorda@bsc.es

