Improved Convolution Implementations on NVIDIA GPUs

Marc Jordà, Pedro Valero-Lara, Antonio J. Peña

JLESC April 2019 - Knoxville
● Interest in neural networks resurged in recent years
 ○ Deep Neural Networks (DNNs)

● Convolutional Neural Networks (CNNs)
 ○ High accuracy in image classification benchmarks
 ○ Several conv algorithms (Direct, GEMM, FFT, Winograd, ...)

● Our convolution implementation for NVIDIA GPUs
 ○ Based on direct application of the convolution formula
 ○ Efficiently exploit incore memories and global memory accesses
Convolutional Neural Networks (CNNs)

- Inclusion of convolutional layers
- Convolutional layer
 - **Weights** are grouped in filters
 - Filters are shared by several output elements
 - Uses convolution operations as part of its computation

- Advantage over fully-connected layers
 - Storage and computational cost does not depend on input or output size
 - Number of filters and its size are a design choice
 - Translation invariance
 - Filters “see” different parts of the input

Fully-connected layer

\[
\text{Out}_i = \text{ActivationFunc}(\sum_{j=0}^{\#In}(W_{i,j} \cdot \text{In}_j) + \text{bias})
\]

Convolutional layer

\[
\text{Output} = \text{ActivationFunc}(\text{ConvolutionOps}(\text{Input},\text{Filters}) + \text{bias})
\]
Convolution Operation - Example

- Example convolution with 1 input and 2 filters
 - 1 input of 5x5x3
 - 2 filters of 3x3x3
 - Stride X and Y = 1

1 output of 3x3x2 (output Z is the number of filters)

Output elements are the scalar product of one filter and a subvolume of the input
The convolutions of a convolutional layer expose **two levels** of data reuse

At the layer level
- A batch of inputs are convolved with all the layer filters
 - Each filter is used with all the inputs
 - Each input is used with all the filters
The convolutions of a convolutional layer expose **two levels** of data reuse

At the layer level
- A batch of inputs are convolved with all the layer filters
 - Each filter is used with all the inputs
 - Each input is used with all the filters

At the convolution level
- Input elements reuse
 - Not constant: input z-rows in the center are reused more
- Filter elements reuse
 - Each filter z-row is reused the same amount of times
 - Inputs are usually larger => more reuse of filter z-rows
 - If stride = 1 (common in CNNs), reuse is done by contiguous subvolume

Filter elements reuse: Input elements that reuse two example Z-rows of the filter (in matching colors) in a convolution with stride=1
Design – Data layout

Considering data layout + data reuse + coalescing

If we have

- NCHW layout
- Warps mapped along W dimension
- Stride = 1

We get

- Good coalescing loading inputs
 - Fully-coalesced warps
 - Some warps may have a gap (overhead similar to misaligned accesses)
 - No need for layout transformations before the actual computation
- Threads in a warp reuse filter data
 - Exploit shared mem and shuffle instructions
 - Faster mem access

Example with warp size = 4
Design – Algorithm

Computation is split into 2 stages:

1. Compute the scalar products between input & filter Z-rows required for the convolutions
 - Exploits the reuse of filter elements in shared memory and registers
Computation is split into 2 stages:

1. Compute the scalar products between input & filter Z-rows required for the convolutions
 - Exploits the reuse of filter elements in shared memory and registers

2. Add the partial results matrices from the 1st stage to obtain each output X-Y plane.
 - Each output element is the sum of one element from each partial results matrix
 - Not necessary for convolutions with 1x1 filters
 - Output of 1st stage has to be stored in the correct layout
Experimental Evaluation

Evaluation dataset

- 602 convolution configurations (X & Y sizes, #filters, depth), from
 - AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19
- Several input batch sizes: 1, 8, 16, 32, 64, 128, 256
- Total 4000+ configurations
- Single-precision floating point
- Average of 9 executions

Experimental platform

- IBM POWER9 server
- V100-SXM2 (Volta) GPU
- Red Hat Enterprise Linux Server 7.4
- CUDA 9.2
- cuDNN 7.1
Overall, our implementation is faster than the best cuDNN variant in 8.31% of the tested configurations
- Mainly in smaller batch sizes (up to 16)
- DL frameworks pick the best algorithm for each convolutional layer

Insights from performance profiling
- Our design better exploits thread block-level parallelism for small batch sizes
- Too many thread blocks negatively impact our performance for large batch sizes
- Compute & memory access units not fully utilized
Conclusions & Future work

Our implementation is competitive for certain parameter intervals
● Convolutions with small batch sizes
● Speedups of up to 2.29x

Improvements currently in progress
● Support for Tensor Cores for FP16 convolutions
 ○ Algorithm has to be adapted to the Tensor Cores matrix-matrix multiplication API
● Obtain a better work distribution among thread blocks
 ○ Work-fusion (e.g. thread coarsening) optimizations
 ○ Compute units utilization can increase (feedback from profiler)
 ○ Improve performance for larger batch and filter sizes
Improved Convolution Implementations on NVIDIA GPUs

For further info:
marc.jorda@bsc.es

Marc Jordà, Pedro Valero-Lara,
Antonio J. Peña

JLESC April 2019 - Knoxville