Scalable Data Ingestion for Stream Processing and Beyond

Gabriel Antoniu
Joint work with Ovidiu Marcu, Alexandru Costan, Maria S. Pérez

9th JLESC workshop, UTK, Knoxville, April 15, 2019
From Big Data to Fast Data

Volume

Data at rest

Stationary
Static

Velocity

Data in motion

Fluid
Dynamic
Correctness	Batch	Exact results
Latency	High-latency	
Cost	Stateless	

Correcness	Streaming	Approximate results
Latency	Low-latency	
Cost	Stateful	
State of the art until recently: Lambda Architectures

- Historical events
- Periodic queries
- Exact historical model
- Batch processing
- Spark

- Real-time events
- Continuous queries
- Approximate real-time model
- Stream processing
- Flink

Results & Actions

What?

Why?
The streaming pipeline: latency happens

Unified batch and stream processing

Ingest delay (write latency)
Throughput (read latency)
Network delay or unavailable
Backlog
Poor storage design
Starved resources
Hardware failure

DATA TRANSFER

Edge Cloud

Unified batch and stream processing
What is ingestion?

- **Collect** data from various sources → *producers*

- **Deliver** them for processing / storage → *consumers*

- Optionally: buffer, log, pre-process

Ingestion determines the processing performance
State of the art: Apache Kafka

Limitations

• Scalability
• Data duplication
The KerA approach to ingestion

• **Scalability** → *Dynamic partitioning*
 • Enables seamless elasticity

• **Data duplication** → *Unified ingestion and storage*
 • Support for both
 • Streams (unbounded data)
 • Objects (bounded data)
Each partition is statically associated with one consumer: limited scalability
KerA: dynamic partitioning

- **Streamlets**: logical stream containers; \#streamlets > \#brokers
- **Groups**: created and processed dynamically; maximum \#active groups per broker
Increased network and storage overheads
KerA: unified ingestion and storage

- Streams
- Acquire
- Objects

INGESTION Brokers

STORAGE Backups

KerA

Move less data, process them faster

Common data model for streams and objects
Evaluating scalability

Vertical

4 brokers, 32 partitions, 128KB request size, 100B records

Horizontal

64 clients, 32 partitions, 1MB request size, 100B records

2x better throughput with 75% less resources
Our vision: hybrid analytics architecture
Hybrid analytics: processing architecture

In situ pre-processing of simulation data

DATA from the Hypothetical World

Computation

In situ stream pre-processing of sensor data

Sensor

DATA from the Real World

Learning

Better Decision

Hybrid (stream + batch) in transit processing (data in-motion + data at-rest)

Historical data

Simulation (e.g., digital twin)

Data processing
Hybrid analytics architecture

Postdoc (ANR OverFlow project)
- Investigating Edge vs. Cloud computing trade-offs for stream processing
- Methodology for benchmarking Edge processing frameworks

Ph.D. (to hire)
- Uniform Cloud and Edge stream processing for Fast Data analytics

- **In situ pre-processing of simulation data**
- **Computation**
- **In situ pre-processing of sensor data**
- **Sensor**
- **Hybrid (stream + batch) in transit processing (data in-motion + data at-rest)**
- **Learning**
- **Better Decision**
- **DATA from the Real World**
- **Postdoc (ANR OverFlow project)**
 - Investigating Edge vs. Cloud computing trade-offs for stream processing
 - Methodology for benchmarking Edge processing frameworks

Pedro Silva

Ph.D. (to hire)
- Uniform Cloud and Edge stream processing for Fast Data analytics

...
Hybrid analytics architecture

In situ pre-processing of simulation data

Computation

DATA from the Hypothetical World

Simulation (e.g., digital twin)

...

In situ stream pre-processing of sensor data

Better Decision

In situ pre-processing of simulation data

Learning

Hybrid (stream + batch)

...

Research Engineer (Inria ADT project)
- Enable support for in situ Big Data analytics
- Elastic allocation of dedicated resources (cores/nodes)

Ovidiu Marcu

Historical data
Hybrid analytics architecture

Startup (ZettaFlow)
- Low and consistent latency (lightweight offset indexing, independent memory management)
- Model applications not partitioning/stream storage

Ph.D. (Inria IPL project)
- HPC – Big Data processing convergence
- Bridge in situ/in transit and stream/batch processing

H2020 project in preparation

In situ pre-processing of simulation data

Computation

In situ stream pre-processing of sensor data

Learning

Better Decision

Hybrid (stream + batch) in transit processing
(data in-motion + data at-rest)

Sensor

KerA++
+seamless integration with in situ/in transit +large state management

DATA from the Real World

Ovidiu Marcu

Hybrid analytics architecture

DATA from the Hypothetical World

Simulation (e.g., digital twin)

In situ pre-processing of simulation data

Computation

In situ stream pre-processing of sensor data

Learning

Better Decision

Hybrid (stream + batch) in transit processing
(data in-motion + data at-rest)

KerA++
+seamless integration with in situ/in transit +large state management

Ovidiu Marcu

Thank You!