

Improving the Performance and Energy Efficiency of HPC Applications Using Autonomic Computing Techniques

Eric RUTTEN, INRIA Grenoble, Ctrl-A team

Project outline

Autonomic Computing & feedback loops in HPC

Adapting performance & energy in HPC

Preliminary results controlling RAPL

Project outline

Autonomic Computing & feedback loops in HPC

Adapting performance & energy in HPC

Preliminary results controlling RAPL

JLESC project outline

Improving the Performance and Energy Efficiency of HPC Applications Using Autonomic Computing Techniques

Topics Advanced Architectures

Keywords autonomic computing, energy efficiency

Members

- Eric Rutten (INRIA) + B. Robu, M. Berekmeri
- Swann Perarnau (ANL) + V. Reis, K. Yoshii, ...

Since 2018

JLESC project outline (ii)

Problem

- perf., power, thermal, ... increasingly unpredictable
- some HW runtime mechanisms available

Approach

- SW control, application-aware, on top of HW
- feedback loop(s): Autonomic Computing and Control Theory

Project outline

Autonomic Computing & feedback loops in HPC

Adapting performance & energy in HPC

Preliminary results controlling RAPL

Ctrl-A: Control for Autonomic Computing

Automated administration & regulation in reaction to variations in load, resources,... in large (Big Data) or embedded (IoT) systems

self-*: deploy, mgmt, healing, protection

promising, but challenge in developing systems need for automation

& separation of concerns

Understand and design control for

problems in **efficiency** (e.g; energy)

& assurances (e.g.crash avoidance)

Eolas, Grenoble

Example 1 : DPR FPGA control

context-aware reconfiguration management & control:

joint work with S. Gueye, J.Ph. Diguet (LabSticc, Lorient)

[AHS17, ICAC18]

insuring : for task/operation,

choice of good enough bitsream version,

w.r.t. given requirements,

following measured metrics

notifying: metrics, ...

in case of impossibility,

to be managed at upper level

by tasks or reqs change

Example 2 : SW level management

e.g., Parallelism vs. synchronization

joint work with N. Zhou, J.F. Méhaut, G. Delaval, B. Robu [CCPE 18]

dynamical management of trade-offs: speedup / consistency

- too much parallelism : overhead & slow down
- too low parallelism : poor performance

Example 2bis: SW level management

minimizing underuse of infrastrucutue

joint work with O. Richard (DATAMOVE), B. Robu (Gipsa-lab) [AlScience@HPDC18]

on top of grid platform with OAR scheduler

GiGri: injection of smaller/indepdt jobs, avoiding overload

runtime regulation

- measure of platform stress
- control: Ioad/stress model-based busy jobs
- considering storage

Example 3: multiple loops coordination

with S. Gueye, N. de Palma, A. Tchana, N. Berthier [FGCS 14, IEEE TSE16]

Self-sizing & self-repair & consolidation in Multi-tier Cloud

intuition avoid interference/redundancies between loops suspend downstream mgrs when upstream busy

model: activity state of mgrs (FSM)

Project outline

Autonomic Computing & feedback loops in HPC

Adapting performance & energy in HPC

Preliminary results controlling RAPL

Performance and Energy in HPC

HPC systems need power management:

- Facilities need to control for max power, or swings in power consumption
- Manufacturing variability: all nodes don't have the same power/performance

Advanced Workloads (workflows, in-situ)

- Node level: workload might not need full CPU power
- Across nodes: workload imbalance, variability can be improved by power shifting.

Infrastructure for Control

Node Power/Performance Management:

- Node-local daemon with access to power and performance monitors and controls
- Launched by users, no root access needed ideally

General resource management design:

- Acts as a customizable control loop inside user jobs
- Can be connected to job launcher, performance APIs.

Project outline

Autonomic Computing & feedback loops in HPC

Adapting performance & energy in HPC

Preliminary results controlling RAPL

Autonomic Computing for Power Management in HPC

Target system considered:

- HW: platform with power capping: RAPL
 - for a power cap Pcap, given as input internal DVFS regulation around / close to Pcap
 - output : actually used power : Pu
- SW: application with measure for progress based on heartbeat or iteration count

Autonomic Computing for Power Management in HPC (ii)

Controlled system:

closing the feedback loop

to regulate the Pcap according to objective

objective:
 keeping *Pcap* minimal for a maintained performance

Autonomic Computing for Power Management in HPC (iii)

Designing controllers:

- simple ones, intuitive
 - scanning
 - hill-climbing
- control theory
 - PID (Proportional, Integral, Derivative)
 - MPC
 (Model predictive control)

Project outline

Autonomic Computing & feedback loops in HPC

Adapting performance & energy in HPC

Preliminary results controlling RAPL

Perspectives

Short term: finalize the design of controllers range from simple intuitive algorithms, to model-based

Experimental evaluation characterize/compare w.r.t.

- ease of use / design
- gain in power consumption
- properties of the controllers (convergence, stability).

Perspectives (ii)

Longer term:

- characterize applications / controllers relationship
- coordinate multiple loops for other system features
 e.g. thermal aspects, parallelism, storage, ...
- hierarchical or distributed composition of multiple loops for large / complex systems

(e.g. involving Dynamically Partially Reconfigurable FPGA)

