Charm4py: Parallel Programming with Python and Charm++
What is Charm4py?

- Parallel/distributed programming framework for Python
- Charm++ programming model (Charm++ for Python)
- High-level, general purpose
- Runs on top of the Charm++ runtime (C++)
- **Adaptive runtime features**: asynchronous remote method invocation, dynamic load balancing, automatic communication/computation overlap
Why Charm4py?

- Python + Charm4py easy to learn/use, many productivity benefits
- Bring Charm++ to Python community
 - No high-level & fast & highly-scalable parallel frameworks for Python
- Benefit from Python software stack
 - Python widely used for data analytics, machine learning
 - Opportunity to bring data and HPC closer
- Performance can be similar to C/C++ using the right techniques
Charm4py Python-derived benefits

- Productivity (high-level, fewer lines of code, easy to debug)
- Automatic memory management
- Automatic serialization
 - No need to define serialization (PUP) routines
 - Can customize serialization of Chares if needed
- Easy access to Python software libraries (Numpy, pandas, scikit-learn, TensorFlow, etc.)
Charm4py-specific features

- Simplifies Charm++ programming
 - Simpler, more intuitive API

- No specialized languages, preprocessing or compilation
 - Everything can be expressed in Python
 - No interface (ci) files!
from charm4py import charm, Chare, Group

class Hello(Chare):
 def sayHi(self, values):
 print('Hello from PE', charm.myPe(), 'vals=', values)
 self.contribute(None, None, charm.thisProxy.exit)

def main(args):
 group_proxy = Group(Hello) # create a Group of Hello chares
 group_proxy.sayHi([1, 2.33, 'hi'])

charm.start(main)
Running Hello World

```bash
$ ./charmrun +p4 /usr/bin/python3 hello_world.py
# similarly on a supercomputer with aprun/srun/...
```

Hello from PE 0 vals= [1, 2.33, 'hi']
Hello from PE 3 vals= [1, 2.33, 'hi']
Hello from PE 1 vals= [1, 2.33, 'hi']
Hello from PE 2 vals= [1, 2.33, 'hi']
Charm4py components

- Python application
 - Import charm4py
- charm4py module
- Charm++ shared library (libcharm.so)
 - Other Python libraries/technologies: numpy, numba, pandas, matplotlib, scikit-learn, TensorFlow, ...
 - C/C++/Fortran/OpenMP
What about performance?

- Many (compiled) parallel programming languages proposed over the years for HPC
- **Can use Python in the same way**: high-level language driving machine-optimized compiled code
 - Numpy (high-level arrays/matrices API, native implementation)
 - Numba (JIT compiles Python “math/array” code)
 - Cython (compile generic Python to C)
Numba

- Compiles Python to native machine using LLVM compiler
 - Good for loops and numpy array code
 - Can also write CUDA kernels

```python
@numba.jit  # (from http://numba.pydata.org)
def sum2d(arr):
    M, N = arr.shape
    result = 0.0
    for i in range(M):
        for j in range(N):
            result += arr[i,j]
    return result

a = arange(9).reshape(3,3)
print(sum2d(a))
```
Shared memory parallelism

- Inside the Python interpreter, **NO**
 - CPython (most common Python implementation) can’t run multiple threads *concurrently* (Global Interpreter Lock)

- Outside the interpreter, **YES**
 - Numpy internally runs compiled code, can use multiple threads (Intel Python + Numpy seems to be very good at this)
 - Access external OpenMP code from Python
 - Numba parallel loops
 - Cython
Chares are distributed Python objects

- Remote methods (aka entry methods) invoked like regular Python objects, via proxy: `obj_proxy.doWork(x, y)`
- Objects are migratable (handled by Charm++ runtime)
- Method invocation asynchronous (good for performance)
- Can obtain a *future* when invoking remote methods:
  ```python
  future = obj_proxy.getVal(ret=True)
  ... do work ...
  val = future.get()  # block until value received
  ```
Serialization (aka pickling)

- Most Python types, including custom types, can be pickled
- Can customize pickling with `__getstate__` and `__setstate__` methods
- pickle module implemented in C, recent versions are pretty fast (for built-in types)
 - Pickling custom objects not recommended in critical path
- Charm4py bypasses pickling for certain types like Numpy arrays
Creating chares

class MyChare(Chare):
 def __init__(self, x):
 self.x = x
 def work(self, param1, param2, param3):
 ...

def main(args):
 # create single chare of type MyChare on PE 1
 obj_proxy = Chare(MyChare, args=[1], onPE=1)
 # create Group (one instance per PE)
 group_proxy = Group(MyChare, args=[1])
def main(args):
 ...
 # create 2D array, 100x100 instances of MyChare
 array_proxy = Array(MyChare, (100, 100), args=[3])
 # invoke method on all members
 array_proxy.work(x, y, z)
 # invoke method on object with index (3,10)
 array_proxy[3,10].work(x, y, z)
Futures

- Threaded entry methods run in their own thread
 - `@threaded`
    ```python
def myThreadedEntryMethod(self, ...):
    ```
 - Main function (or mainchare constructor) is threaded by default

- Threaded entry methods can use futures to wait for a result or for completion of a (distributed) process

- While a thread is blocked, other entry methods in the same process (of the same or different chares) continue to be scheduled and executed
@threaded
def someEntryMethod(self, ...):
 a1 = Array(MyChare, 100) # create array of 100 elems
 a2 = Array(MyChare, 20) # create array of 20 elems
 charm.awaitCreation(a1, a2) # wait for creation
 f1 = a1[0].calculateValue(ret=True)
 f2 = a2[0].calculateValue(ret=True)
 a2.initialize(ret=True).get() # wait for broadcast completion
 val1 = f1.get()
 val2 = f2.get()
 f3 = charm.createFuture()
 a1.work(f3)
 f3.get() # wait for completion
Blocking collectives

- Blocking collectives are available for threaded entry methods (use futures internally):

```python
@threaded
def someEntryMethod(self, ...):
    # wait for elements in my collection to reach barrier
    charm.barrier(self)
    # blocking allReduce among members of collection
    result = charm.allReduce(data, reducer, self)
```
Reductions

- Reduction (e.g. sum) by elements in a collection:

```python
def work(self, x, y, z):
    A = numpy.arange(100)
    self.contribute(A, Reducer.sum, obj_proxy.collectResults)
```

- Target of reduction can be an entry method or a future

- Easy to define custom reducer functions. Example:
 - `def mysum(contributions): return sum(contributions)`
 - `self.contribute(A, Reducer.mysum, obj.collectResult)`
Benchmark using stencil3d

- In examples/stencil3d, ported from Charm++
- Stencil code, 3D array decomposed into chares
- Full Python application, array/math sections JIT compiled with Numba
- Cori KNL 2 nodes, strong scaling from 8 to 128 cores
Stencil3d results on Cori KNL

Stencil3d on Cori KNL 2 nodes, strong scaling

Time per iteration (ms)

<table>
<thead>
<tr>
<th># cores</th>
<th>Time (ms)</th>
<th>Charmpy</th>
<th>Charm++</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>+1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>+3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>+5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>+8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>+29%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(results not based on latest Charm4py version)
Benchmark using LeanMD

- MD mini-app for Charm++
 (http://charmplusplus.org/miniApps/#leanmd)
 - Simulates the behavior of atoms based on the Lennard-Jones potential
 - Computation mimics the short-range non-bonded force calculation in NAMD
 - 3D space consisting of atoms decomposed into cells
 - In each iteration, force calculations done for all pairs of atoms within the cutoff distance

- Ported to Charm4py, full Python application. Physics code and other numerical code JIT compiled with Numba
LeanMD results on Blue Waters

Performance on Blue Waters (8 million particles)

- Charmpy
- Charm++

Time per step (ms)

- 2048
- 4096
- 8192
- 16384

Avg difference is 19%
(results not based on latest Charm4py version)
Experimental features

- Interactive mode
 - Launches an interactive Python shell where user can define new chares, create them, invoke remote methods, etc.
 - Currently for (multi-process) single node

- Distributed pool of workers for task scheduling:

```python
def fib(n):
    if n < 2: return n
    return sum(charm.pool.map(fib, [n-1, n-2],
                       allow_nested=True))

def main(args):
    result = fib(33)
```
Summary

- Easy way to write parallel programs based on Charm++ model
- Good runtime performance
 - Critical sections of Charm4py runtime in C with Cython
 - Most of the runtime is C++
- High performance using NumPy, Numba, Cython, interacting with native code
- Easy access to Python libraries, like SciPy and PyData stacks
Thank you

- More resources:
- Documentation and tutorial at http://charm4py.readthedocs.io
- Source code and examples at: https://github.com/UIUC-PPL/charm4py