Experimental Evaluation of Supply Voltage Underscaling in FPGAs

Presentation by: Leonardo Bautista-Gomez
Aggressive Undervolting

- **Aggressive undervolting** - Underscaling the supply voltage **below the nominal and safe level**:
 - **Power/Energy Efficiency**: Reduces dynamic and static power quadratically and linearly, respectively.
 - **Reliability**: Increases the circuit delay and in turn, causes **timing faults**.

- **Dual/Multi-Vdd, DVS, and DVFS**: **Similar but different mechanisms** to aggressive undervolting:
 - **Similarity**: Underscaling the supply voltage.
 - **Difference**: Undervolting is until a **certain safe level**, usually constrained by vendors.
Motivation

Contribution of FPGAs in large data centers is growing, expected to be in 30% of datacenter servers by 2020 (Top500 news).

- In comparison to ASICs, energy efficiency of FPGAs is a serious concern, i.e., 10X-100X less-efficient.

- Nominal voltage reduction of FPGAs is naturally applied for different generations.
FPGA BRAMs:
- Hierarchy of set of bit-cells distributed over the chip.
- Size of each BRAM: 16-kbits

Experimental Methodology:
- **HW**: Transfer content of BRAMs to the host.
- **SW**: Analyze data, and adjust voltage of BRAMs.

Floorplan of VC707 (2060 BRAMs)
Overall Trade-offs on BRAMs - Power & Reliability

VC707

Fault Rate (per 1 Mbit)
NN Use case: Experimental Methodology

Neural Network (NN)

<table>
<thead>
<tr>
<th>Type</th>
<th>Fully-connected classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of weights</td>
<td>~1.5 millions</td>
</tr>
<tr>
<td>Activation function</td>
<td>Logsig (logarithmic sigmoid)</td>
</tr>
</tbody>
</table>

Major benchmark

<table>
<thead>
<tr>
<th>Name-type</th>
<th>MNIST- handwritten digit images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of images</td>
<td>Training: 60000, Classification: 10000</td>
</tr>
<tr>
<td>Number of pixels per image</td>
<td>28*28=256</td>
</tr>
<tr>
<td>Number of output classes</td>
<td>10</td>
</tr>
</tbody>
</table>

Additional benchmarks

<table>
<thead>
<tr>
<th>Names</th>
<th>Forest and Reuters</th>
</tr>
</thead>
</table>

Data representation model

<table>
<thead>
<tr>
<th>Type</th>
<th>16-bits fixed-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>Minimum sign and digit per layer</td>
</tr>
</tbody>
</table>

An example implementation on VC707

<table>
<thead>
<tr>
<th>Frequency</th>
<th>100 Mhz</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAM usage (total: 2060)</td>
<td>70.8%</td>
</tr>
</tbody>
</table>
Low-Voltage FPGA-based NN

Power saving

- Significant power reduction until the minimum safe voltage, *i.e.*, V_{min} (By eliminating the voltage guardband).
- Additional 40% power reduction below the voltage guardband.

NN accuracy loss

- The NN classification error exponentially increases from 2.56% (inherent classification error) to 6.74% through undervolting BRAMs beyond V_{min}.
- Fault mitigation techniques to prevent the accuracy loss:
 - Application-aware mechanism
 - Built-in ECC
Fault Mitigation: Built-in ECC

- **Built-in ECC of FPGA BRAMs:**
 - Hamming-code.
 - Two (2) additional bits per row are reserved as parities.
 - SECDED (Single-Error Correction and Double-Error Detection).

- **Experimental Methodology:**
 - Activate built-in ECC under low-voltage read operations.

- **Experimental Observations:**
 - >90% fault correction
 - >7% fault detection (not correction)
ECC for NN Accelerator

Pros:
- Significant accuracy loss prevention.
- Negligible power and performance overhead.

Cons:
- Requires larger data rows/lines.
- Not all FPGAs are equipped with this technique.

Area Utilization (%)

<table>
<thead>
<tr>
<th></th>
<th>BRAM</th>
<th>LUT</th>
<th>FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without ECC</td>
<td>96%</td>
<td>3%</td>
<td>0.25%</td>
</tr>
<tr>
<td>With ECC</td>
<td>100%</td>
<td>12%</td>
<td>0.25%</td>
</tr>
</tbody>
</table>

BRAM Power (W)

<table>
<thead>
<tr>
<th></th>
<th>Vnom= 1V</th>
<th>Vmin= 0.61V</th>
<th>Vcrash= 0.54V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without ECC</td>
<td>2.4</td>
<td>0.31</td>
<td>0.198</td>
</tr>
<tr>
<td>With ECC</td>
<td>----</td>
<td>----</td>
<td>0.211</td>
</tr>
</tbody>
</table>

ECC efficiency to prevent NN accuracy loss

ECC area and power costs
Ongoing/Future Works

- Different **computing paradigms**, e.g., Heterogeneous Computing, Approximate Computing, Stochastic Computing, among others.

- Generalizing observations by extending the experiments to other FPGA vendors like *Intel/Altera*.

- Evaluation the undervolting in *noisy and harsh environments*.

- More advanced designs, where other components such as *I/O and DSP* are undervolted.

- Application profiling to analyze *workload-to-workload* variation.

- *Dynamic V_{min} prediction and scaling*, adapted by frequency and temperature.
For More Information

- Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman, "Fault Characterization Through FPGAs Undervolting.", in 28th International Conference on Field Programmable Logic & Applications (FPL), 2018.

- Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman, "Evaluating Built-in ECC of FPGA on-chip Memories for the Mitigation of Undervolting Faults.", in 27st Euromicro International Conference of on Parallel, Distributed, and Network-based Processsng (PDP), 2019.

Thanks!

Contact:
behzad.salami@bsc.es
1. **Real hardware:** Aggressive undervolting has shown significant efficiency to reduce the energy consumption.
 - **Devices:**
 - CPUs: Itanium II (ISCA2014), X86 (IOLTS2017), ARM (HPCA2017)
 - GPUs: NVidia (Micro2015)
 - DRAMs: Multiple Brands (Sigmetrics2017)
 - **FPGA:** This work
 - Focus of the previous works:
 - Voltage guardband
 - Minimum safe voltage, *i.e.*, V_{min} prediction
 - Fault characterization and mitigation
 - Chip-to-chip, core-to-core, and workload-to-workload variation

2. **Simulation-based studies:** More straightforward and more parameters but less precise
 - ASIC DNN: Minerva (Micro2016), Thundervolt (DAC2018)
 - CPU: Bravo (HPCA2017)
 - Network On-Chip (HPCA2014)
Voltage Scaling Capability in Xilinx

Voltage distribution on Xilinx platforms

- VC707
 - VCCINT: 1V, 1.8V, 3.3V, 0-3.3V, 2.5V, 1.5V, 1V, 1.2V
 - VCCBRAM: 2V, 1V

Evaluated Xilinx platforms

- VC707: performance-efficient design
- KC705: power-efficient design (A & B)
- ZC702: ARM integrated with FPGA

Voltage regulator

- Power Management Bus (PMBus).
- Hardwired to the host.
1. Undervolting FPGAs
 - Voltage guardband
 - Overall power and reliability trade-off

2. Fault characterization in FPGA on-chip memories
 - Fault type, location, and rate
 - Temperature, Chip

3. Low-voltage FPGA-based Neural Network (NN)
 - Power consumption and NN accuracy characterization
 - Fault mitigation techniques
 - Application-aware technique
 - Built-in ECC
Overall Voltage Behavior

- **SAFE**
 - No observable fault
 - Voltage Guardband below V_{nom}

- **CRITICAL**
 - Faults manifest
 - Below V_{min}, min safe voltage

- **CRASH**
 - FPGA stops operating below V_{crash}, min operating voltage

- **Voltage guardband**: to ensure the worst-case environmental and process technologies.

- **Experimental conditions**: At ambient temperature and maximum operating frequency.

We performed more detailed studies on **FPGA on-chip memories (BRAMs)**.
Overall Trade-offs on BRAMs - Multiple Platforms

ZC702

- **VCCBRAM (V)**:
 - $V_{nom} = 1 V$
 - $V_{min} = 0.59 V$
 - $V_{crash} = 0.53 V$

- **Fault Rate (per 1 Mbit)**
 - 0
 - 50
 - 100
 - 200

- **BRAM Power (mWatts)**
 - 0
 - 2
 - 4

- **BRAM Power (Watts)**
 - 0.05
 - 0.1
 - 0.15

VC707

- **VCCBRAM (V)**:
 - $V_{nom} = 1 V$
 - $V_{min} = 0.59 V$
 - $V_{crash} = 0.54 V$

- **Fault Rate (per 1 Mbit)**
 - 80
 - 60
 - 40
 - 20

- **BRAM Power (Watts)**
 - 0.05
 - 0.1
 - 0.15

- **BRAM Power (mWatts)**
 - 0
 - 2
 - 4

KC705-A

- **VCCBRAM (V)**:
 - $V_{nom} = 1 V$
 - $V_{min} = 0.59 V$
 - $V_{crash} = 0.53 V$

- **Fault Rate (per 1 Mbit)**
 - 0
 - 50
 - 100
 - 200

- **BRAM Power (mWatts)**
 - 0
 - 2
 - 4

- **BRAM Power (Watts)**
 - 0.05
 - 0.1
 - 0.15

KC705-B

- **VCCBRAM (V)**:
 - $V_{nom} = 1 V$
 - $V_{min} = 0.57 V$
 - $V_{crash} = 0.54 V$

- **Fault Rate (per 1 Mbit)**
 - 80
 - 60
 - 40
 - 20

- **BRAM Power (Watts)**
 - 0.05
 - 0.1
 - 0.15

- **BRAM Power (mWatts)**
 - 0
 - 2
 - 4
Key Points of the First Contribution

- **Voltage regions:** Safe, Critical, and Crash voltage regions exist for all platforms, slightly different among studied platforms.

- **Voltage guardbands:** Large voltage guardband confirmed for all platforms on the studied voltage rails, *i.e.*, VCCBRAM and VCCINT.

- **Power reduction:** There is significant power reduction through aggressive undervolting, with more details studied for BRAMs.

- **Reliability costs:** Fault rates exponentially increase in the Critical voltage region.
Contributions

1. Undervolting FPGAs
 - Voltage guardband
 - Overall power and reliability trade-off

2. Fault characterization in FPGA on-chip memories
 - Fault type, location, and rate
 - Temperature, Chip

3. Low-voltage FPGA-based Neural Network (NN)
 - Power consumption and NN accuracy characterization
 - Fault mitigation techniques
 - Application-aware technique
 - Built-in ECC
Fault Characterization at CRITICAL Region

Fault variability among FPGA BRAMs:
Fully non-uniform fault distribution

- Fully non-uniform fault distribution.
- Majority of BRAMs do not experience many faults.

K-means clustering

<table>
<thead>
<tr>
<th>%BRAMs</th>
<th>Average Fault Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8%</td>
<td>0.86%</td>
</tr>
<tr>
<td>9.4%</td>
<td>0.24%</td>
</tr>
<tr>
<td>52.3%</td>
<td>0.03%</td>
</tr>
<tr>
<td>36.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VC707 (2060 BRAMs)
VCCBRAM@ \(V_{\text{crash}}=0.54\)V
Temperature@ Ambient
Fault Characterization at **CRITICAL** Region

Type of undervolting faults:

Permanent faults at specific voltage

- There is no considerable change on the rate and location of faults over time.
- Validated by repeating experiments for 100 times.
- The physical location of BRAMs is extracted using Vivado.

Key observations discussed:

1. Fault rate exponentially increases by further undervolting.
2. BRAMs have fully different reliability behavior against undervolting faults.
3. The fault rate and location is deterministic over the time.

Three parameters orthogonally have significant impact on the rate and location of faults:

1. Voltage
2. Temperature
3. Chip

FVM can be potentially used in fault mitigation techniques!
Location of undervolting faults:

Fault Inclusion Property (FIP)

- FIP: A corrupted bit at a specific voltage stays faulty in lower voltages as well.

- FIP can be used in mitigation techniques.

Illustration of FIP

FIP shown as fault rate for VC707
Fault Characterization (Temperature Impacts)

Practical confirmation of Inverse Temperature Dependency (ITD)

- **Methodology**: Adjusting environmental temperature, monitoring on-board temperature via PMBus.

- **Experimental Observation**:
 - At higher temperatures, fault rate is significantly reduced.

- **Inverse Temperature Dependency (ITD)**
 - For nano-scale technology nodes, under ultra low-voltage operations, the circuit delay reduces at higher temperatures since supply voltage approaches the threshold voltage.

\[T = 50 \, ^0\text{C} \quad T = 60 \, ^0\text{C} \quad T = 70 \, ^0\text{C} \quad T = 80 \, ^0\text{C} \]

* x-axis: VCCBRAM (V). * y-axis: fault rate (per 1Mbit).

Even identical samples of same chips have totally different reliability behavior, due to the process variation/aging effects.

- **Methodology:** Repeating experiments on two identical samples of KC705 (A&B).
- **Observations:**
 - Fault rates significantly vary, more than 4X.
 - Fault Variation Maps (FVMs) are entirely different.

Even identical samples of same chips have totally different reliability behavior, due to the process variation/aging effects.

- **Methodology:** Repeating experiments on two identical samples of KC705 (A&B).
- **Observations:**
 - Fault rates significantly vary, more than 4X.
 - Fault Variation Maps (FVMs) are entirely different.

Even identical samples of same chips have totally different reliability behavior, due to the process variation/aging effects.

- **Methodology:** Repeating experiments on two identical samples of KC705 (A&B).
- **Observations:**
 - Fault rates significantly vary, more than 4X.
 - Fault Variation Maps (FVMs) are entirely different.

![KC705-A](image1.png) ![KC705-B](image2.png)
Detailed Fault Characterization

- **Fault rate:** The increase of the fault rate by further undervolting is exponential.

- **Non-uniform fault distribution among BRAMs:** BRAMs do not have similar sensitivity against undervolting.

- **Deterministic behavior of faults:** The location of faults does not change over the time, at certain *voltage* and *temperature*, and for a certain *chip*.

- **Reliability behavior over different voltage levels:** There is Fault Inclusion Property (FIP).

- **Environmental temperature:** At higher temperatures, FPGA BRAMs shows better reliability behavior, *i.e.*, less fault rate.

- **Reliability differences for chips:** Even identical chips shows fully different reliability behaviors.
Contributions

1. Undervolting FPGAs
 - Voltage guardband
 - Overall power and reliability trade-off

2. Fault characterization in FPGA on-chip memories
 - Fault type, location, and rate
 - Temperature, Chip

3. Low-voltage FPGA-based Neural Network (NN)
 - Power consumption and NN accuracy characterization
 - Fault mitigation techniques
 - Application-aware technique
 - Built-in ECC
NN Implementation on FPGA

- Input data: off-chip DDR memory.
- Weights: on-chip FPGA BRAM.
- Computation: Streaming data onto DSPs and LUTs.
- We undervolt VCCBRAM:
 - Weights of the NN are potentially affected.
Below voltage guardband level at **CRITICAL** voltage region, we present ICBP to prevent NN classification error rate loss.

Core Idea: Map most-sensitive weights to faults into robust BRAMs.

- **Q:** Which are the most-sensitive NN weights? **A:** Deeper Layers.
ICBP Evaluation

- **Pros:**
 - Significant accuracy loss prevention.
 - No power and performance overhead.

- **Cons:**
 - Needs the FVM as a pre-process step → Built-in ECC is evaluated without having this cost.

![Graph showing BRAMs Power and NN Classification Error](image)

- **Inherent NN Error:** 2.56%
- **NN Error by Default Placement**
- **NN Error by ICBP**
- **BRAM Power**
Key Points of the Third Contribution

- **Power reduction for FPGA-based accelerates:** Significant energy improvement can be achieved for FPGA-based accelerators (studied for typical NN) through undervolting:
 - By eliminating the voltage guardband
 - By further undervolting in the critical voltage region

- **Cost of undervolting:** Accuracy loss is also significant but controllable at the critical voltage region.

- **Fault mitigation techniques:** According to the fault characterization study, efficient mitigation techniques can be deployed to prevent the NN accuracy loss.
Wrap up

- Summary
- Conclusion
- Potential Next Steps
-
There is significant potential in commercial FPGAs to improve the energy efficiency through aggressive undervolting.

- By eliminating the conservative voltage guardband
- By further undervolting into the voltage critical region

Undervolting faults manifest deterministic behaviors.

Efficient fault mitigation techniques can be deployed which can allow to further energy saving.

State-of-the-art FPGA-based accelerators can be adapted by undervolting approach.
We **experimentally** showed how Xilinx FPGAs work under aggressive low-voltage operations.

There is a **conservative voltage guardband** below the nominal voltage level, *i.e.*, V_{nom}.

BRAMs **power** significantly reduces through undervolting; however, **reliability** degrades below the minimum safe voltage, *i.e.*, V_{min}.

We **characterized** the behavior of undervolting faults at the critical region.

We evaluated FPGA undervolting for a **typical NN accelerator**.
Constraints of the Xilinx FPGAs for Undervolting

- Many FPGA platforms, e.g., Zynq are not equipped with voltage scaling capability.

- There is no standard about the voltage distribution among platform components.

- In Xilinx products, voltage regulators are hardwired to the host through PMBus interface.

- In many cases, several components on the FPGA platform share a single voltage rail.

- Vendors set unnecessarily conservative voltage guardbands that increase the energy.

- There is no publicly-available circuit-level information of FPGAs.
LEGaTO is a low energy toolset for heterogeneous computing

https://legato-project.eu/