LASs – Linear Algebra routines on OmpSs

Sandra Catalán (scatalan@bsc.es), Pedro Valero, Xavier Martorell and Jesús Labarta
1) Introduction
2) TRSM in LASs
3) NPGETRF in LASs
4) sLASs on small mat.
5) SpMV
6) Ongoing work
Programming Model

OmpSs and OpenMP Tasks (Runtime):

- We divide the problem into tasks
 - Data dependences among tasks (DAG)
- Runtime manages and schedules the running of the tasks
 - Transparent
 - Runtime is in charge of the optimizations, not the programmer
 - Easy to implement
 - Easy to port
 - Easy to maintain

```c
ddss_dgemm( ... )
{
  ...
  for ( mi = 0; mi < mt; mi++ ){
    for ( ni = 0; ni < nt; ni++ ){
      for ( ki = 0; ki < kt; ki++ ){
        #pragma oss task in( TILE_A[mi][ki] ) \ 
          in( TILE_B[ki][ni] ) \ 
          inout( TILE_C[mi][ni] ) \ 
          shared( TILE_A, TILE_B, TILE_C ) \ 
          firstprivate( mi, ni, ki, betat )
        cblas_dgemm( CblasRowMajor,
                    ( CBLAS_TRANSPOSE ) TRANS_A,
                    ( CBLAS_TRANSPOSE ) TRANS_B,
                    tile_size_m,
                    tile_size_n,
                    tile_size_k,
                    ALPHA, TILE_A[mi][ki], tile_size_k,
                    TILE_B[ki][ni], tile_size_n,
                    betat, TILE_C[mi][ni], tile_size_n );
      }
    }
  }
}
```
OpenMP vs OmpSs

```
#pragma omp parallel
#pragma omp master
{
  #pragma omp task depend(in:A[0:lda*ak]) \
    depend(in:B[0:ldb*bk]) \
    depend(out:C[0:ldc*n])
  {
    core_dgemm(transa, transb, \
               m, n, k, \
               alpha, A, lda, \
               B, ldb, \
               beta, C, ldc);
  }
  #pragma omm taskwait
}
```

Diagram:
- OpenMP PARALLEL (FORK)
- END OF PARALLEL REGION
- IMPLICIT SYNCHRONIZATION
- Task pool
- Runtime
- Thread 1
- Thread 2
- Thread n
1) Introduction

2) TRSM in LASs

3) NPGETRF in LASs

4) sLASs on small mat.

5) SpMV

6) Ongoing work
BLAS-3 Optimization

dtrsm (triangular solve)

• Join in one tasks multiple \textit{dgemm} that compute one column, instead of one task per tile
 ∗ Less number of tasks/dependences
 ∗ Smaller DAG
 ∗ Better exploitation of memory hierarchy
 ∗ Tunable (Auto-tuning)
 ∗ \textbf{Use of OmpSs regions}
 ∗ Tile Size \rightarrow size of the matrix and #cores
 * \(36864^2 \rightarrow 768^2\)

```c
for (d = 0; d < dt; d++){
  for (c = 0; c < ct; c++){
    #pragma oss task ...
    dtrsm( ... );
  }
  for (c = 0; c < ct; c++) {
    for (r = d; r < rt; r++)  {
      #pragma oss task ...
      dgemm( ... );
    }
  }
}
```
Performance Evaluation (Extrae + Paraver)

dtrsm
- LASs-opt
 - Faster than LASs
 - from 18432^2 in dtrsm and from 24576^2 in dtrmm
 - $5\% (18432^2) \rightarrow 12\% (36864^2)$
 - Faster than Plasma (OpenMP)
 - from 30720^2
 - $12\% (30720^2) \rightarrow 15\% (36864^2)$
 - On small matrices the optimization is not effective
 - $6144^2 \rightarrow \text{tile_size} = 128$
 - Small tiles \rightarrow small IPC (GLFOPS) in dgemm

![Graph showing performance comparison](image)

<table>
<thead>
<tr>
<th>Matrix Size (MxM)</th>
<th>Time(s)</th>
<th>Plasma</th>
<th>LASs</th>
<th>LASs_opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>6144</td>
<td></td>
<td>0.16</td>
<td>0.20</td>
<td>0.29</td>
</tr>
<tr>
<td>12800</td>
<td></td>
<td>1.12</td>
<td>1.45</td>
<td>1.50</td>
</tr>
<tr>
<td>18432</td>
<td></td>
<td>3.96</td>
<td>4.28</td>
<td>4.06</td>
</tr>
<tr>
<td>24576</td>
<td></td>
<td>9.20</td>
<td>9.83</td>
<td>9.44</td>
</tr>
<tr>
<td>30720</td>
<td></td>
<td>19.89</td>
<td>19.83</td>
<td>17.45</td>
</tr>
<tr>
<td>36864</td>
<td></td>
<td>38.29</td>
<td>36.61</td>
<td>32.29</td>
</tr>
</tbody>
</table>
sLASs

dtrsm (triangular solve)

- Depending on the matrix size and number of cores, the optimization is effective or not
 → We need a mechanism that allows us to adapt the execution, depending on:
 ▪ the size of the matrix
 ▪ the cores available
 → Minimum modifications on the code
 ▪ Low maintainability cost
 ▪ Portability and adaptability

- This is implemented by using:
 → Regions
 → Weak dependences
 → Final clause

```c
for ( d = 0; d < dt; d++){
    for ( c = 0; c < ct; c++){
        #pragma oss task ...
        dtrsm( … );
    }
    for ( c = 0; c < ct; c++) {
        for ( r = d; r < rt; r++)  {
            #pragma oss task …
            dgemm( … );
        }
    }
}
```

```c
smart_dtrsm(is_final);
for ( d = 0; d < dt; d++){
    for ( c = 0; c < ct; c++){
        #pragma oss task ...
        dtrsm( … );
    }
    for ( c = 0; c < ct; c++) {
        #pragma oss task \ 
        weakinout (TILEB[d:rt-1][c]) …
        final(is_final)
        for ( r = d; r < rt; r++) {
            #pragma oss task \ 
            inout(TILEB[r][c]) …
            dgemm( … );
        }
    }
}
```

Barcelona Supercomputing Center
Centro Nacional de Supercomputación
Performance Evaluation (Extrae + Paraver) dtrsm@sLASs

- Obtains similar results to the reference implementations
 - Nesting (condition of the final OmpSs clause = false):
 - from 6144^2 to 18432^2
 - Insufficient parallelism to do join on dgemm
 - $6144 / 512$ (Default tile size) $<$ number of cores (48)
 - Instantiate more tasks
 - $0.82\% (18432^2)$
 - No nesting (condition of the final OmpSs clause = true)
 - From 24576^2 to 36864^2
 - Big matrices \rightarrow join on dgemm and bigger tiles size
 - No overhead

<table>
<thead>
<tr>
<th>Matrix Size (MxM)</th>
<th>LASs</th>
<th>LASs_opt</th>
<th>sLASs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6144</td>
<td>0.20</td>
<td>0.29</td>
<td>0.20</td>
</tr>
<tr>
<td>12288</td>
<td>1.45</td>
<td>1.54</td>
<td>1.54</td>
</tr>
<tr>
<td>18432</td>
<td>4.28</td>
<td>4.06</td>
<td>4.35</td>
</tr>
<tr>
<td>24576</td>
<td>9.83</td>
<td>9.44</td>
<td>9.51</td>
</tr>
<tr>
<td>30720</td>
<td>19.83</td>
<td>17.45</td>
<td>17.36</td>
</tr>
<tr>
<td>36864</td>
<td>36.61</td>
<td>32.29</td>
<td>30.63</td>
</tr>
</tbody>
</table>

Time(s)
1) Introduction
2) TRSM in LASs
3) NPGETRF in LASs
4) sLASs on small mat.
5) SpMV
6) Ongoing work
sLASs

dnpgetrf (LU factorization without pivoting)

- Np → no pivoting
 - Well-conditioned matrices
 - For the sake of performance evaluation
 - To compare with pivoting versions
- Dynamic behavior
 - The parallelism (# dgemm) is reduced along the factorization
 - In the first steps → the optimization can be effectively exploited
 - In the last steps → the optimization is not effective
 - The “is_final” condition must be computed every step
 - smart_dnpgetrf

```c
for ( d = 0; d < dt; d++){
    #pragma oss task ...
    dnpgetrf( ... );
    for ( r = d+1; r < rt; r++){
        #pragma oss task ...
        dtrsm( ... );
    }
    for ( c = d+1; c < ct; c++){
        #pragma oss task ...
        dtrsm( ... );
    }
    for ( c = d+1; c < ct; c++){
        smart_dnpgetrf(is_final);
        #pragma oss task \ 
        weaken(TILEA[d+1:rt-1][d]) ... 
        final(is_final) 
        for ( r = d+1; r < rt; r++) {
            #pragma oss task \ 
            in(TILEA[r][d]) ... 
            dgemm( ... );
        }
    }
}
```
Performance Evaluation (Extrae + Paraver)
dnpgetrf@sLASs

- Nesting (condition of the final OmpSs clause = false):
 - from 6144\(^2\) to 18432\(^2\)
 - Insufficient parallelism to do join on dgemm
 - 6144 / 512 (Default tile size) < number of cores (48)
 - Instantiate more tasks
 - 0.79\% (12288\(^3\))

- No nesting (condition of the final OmpSs clause = true)
 - From 24576\(^2\) to 36864\(^2\)
 - In the first steps → high parallelism
 - Big matrices → join on dgemm and bigger tiles size
 - Time Reduction in the tasks instantiation
 - 36.03\% → 17.31\%
 - Increase of IPC in dgemm
 - ~1.7 → ~2.25

<table>
<thead>
<tr>
<th>Matrix Size (MmM)</th>
<th>6144</th>
<th>12288</th>
<th>18432</th>
<th>24576</th>
<th>30720</th>
<th>36864</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASs</td>
<td>0.19</td>
<td>0.93</td>
<td>2.90</td>
<td>6.63</td>
<td>13.10</td>
<td>22.40</td>
</tr>
<tr>
<td>sLASs</td>
<td>0.19</td>
<td>0.93</td>
<td>2.96</td>
<td>7.04</td>
<td>11.45</td>
<td>20.28</td>
</tr>
</tbody>
</table>
1) Introduction
2) TRSM in LASs
3) NPGGETRF in LASs
4) sLASs on small mat.
5) SpMV
6) Ongoing work
SLASs – Improving small matrices performance

Why small matrices?

- SLASs
 - $N=12288$, $b=512$, 48 cores
- There exists a significant workload imbalance (20% time)
- Improving workload balance benefits from small to large matrices.
SLASs – Improving small matrices performance

From LASs to sLASs

- **SLASs**
 - $N=4096$, $b=512$, 48 cores
 - Big workload imbalance.

- **SLASs + opt. gemm/trsm tasks**
 - $N=4096$, $b=512$, 48 cores
 - Workload imbalance is considerably reduced.

- **PLASMA**
 - $N=4096$, $b=512$, 48 cores
 - Big workload imbalance.
1) Introduction
2) TRSM in LASs
3) NPGETRF in LASs
4) sLASs on small mat.
5) SpMV
6) Ongoing work
LASs
dspmv (sparse matrix-vector multiplication) Y = ALPHA * A * X + Y * BETA

1 Task per Row
- High number of tasks
- Tasks are not big enough

Blocking
- Requires preprocessing
- Data dependences

Taskloop
- Grainsize needs to be determined
- Easy to implement

Blocking + Nesting
- Requires preprocessing
- Data dependences

Grouping
- Requires extra calculations to create groups
#pragma oss taskloop grainsize ...
for (r = 0; r < nRows; r++){
 Sval = 0.0;
 for (c = 0; c < nCols; c++) {
 val = VAL_A[ROW_A[r]+c];
 col = COL_A[ROW_A[r]+c];
 sval += val* X[col]*ALPHA;
 }
 Y[r] = sval + Y[r] *BETA;
}

for (rb = 0; rb < nRows; rb++)
{
 #pragma oss task
 {
 nnz = number_of_non_zeros_in_row_block(rb);
 #pragma omp taskloop num_tasks(nnz/th) if (nnz > th)
 for (r = rb; r <r + rb ; r++){
 Sval = 0.0;
 for (c = 0; c < nCols; c++) {
 val = VAL_A[ROW_A[r]+c];
 col = COL_A[ROW_A[r]+c];
 sval += val* X[col]*ALPHA;
 }
 Y[r] = sval + Y[r] *BETA;
 }
 }
}

Note that th is a threshold set to 40,000, a number determined experimentally.
Ongoing work

• Iterative sparse solvers
 • CG

• Direct sparse solvers

• Improving GESV performance
 • Small matrices optimizations