Large scale communications for task-based runtime systems

Philippe SWARTVAGHER
PhD Student at Inria Bordeaux – Sud-Ouest

11th JLESC Workshop
Motivation

- Emergence of **distributed task-based runtime systems**

- The runtime system knows many information about current task scheduling, future communications to perform...
- The communication library knows many information about current communications, network state...

How can both efficiently interact?
Thesis topic

Interactions between task-based runtime systems
and communication library

(with scalability in mind)

Supervised by Alexandre DENIS and Emmanuel JEANNOT
Efficient broadcasts

- In asynchronous dynamic task-based runtime system:
 > A data owned by a node can be needed on several other nodes: a **broadcast**
 > Only the sender node knows all recipients
 > Recipient node ignores if received data is part of a broadcast
 > → MPI_Bcast not usable in this case

- We developed **dynamic broadcasts**:
 > Use efficient broadcast algorithms
 > Routing informations are stored in message header

Performance gain of tiled Cholesky decomposition with our **dynamic broadcasts** on 100 nodes (1600 cores).

Performance analysis

- Still some open questions:
 > 30% performance improvement: is it the theoretical expected gain?
 > No performance improvement for big matrices: is it normal?

- Different performance improvements according to cluster characteristics:
 > Which characteristic is important?

- Tracing tools:
 > Can have a strong impact on performance (and thus hide some phenomena)
 > Give a lot of metrics: which ones are relevant?
 > Hard to use on many nodes...

- Anyway: traces showed that, even on two nodes, during task execution, some communications can be very looooooong
Worker scalability

- When using many nodes:
 > Using all available workers does not give the best performance
 > Dynamic broadcasts behave better with less workers
 > But works well on a single node → impact of communications?

Impact of the number of workers used for Cholesky decomposition on 16 nodes with each 36 cores.
Competition between communication and computation?

- During task execution, some communications can be very long
- Using a lot of workers seems to degrade communication performances

Contention with data moving between:
- memory and cores
- memory and NIC

Impact of CPU / uncore / ... frequency variations
Collaboration opportunities

- Precise performance analysis (with light overhead)
- Simulation / measure of data movement within a node
- Demystify interactions between computation and communication
- Analyze and improvement of application with challenging communication patterns

→ Feel free to contact me! philippe.swartvagher@inria.fr