PaRSEC: A Distributed Tasking Environment for scalable hybrid applications

https://bitbucket.org/icldistcomp/parsec

1.3.1.11 STPM11

JLESC Meeting – Urbana-Champaign, July 18, 2017
A [very short] history of computing paradigms

- BSP & early message passing
- MPI + X
- MPI + X + Y + Z + ...

• Difficult to express the potential algorithmic parallelism
• Why are we still struggling with control flow?
• Software became an amalgam of algorithm, data distribution and architecture characteristics
• Increasing gaps between the capabilities of today’s programming environments, the requirements of emerging applications, and the challenges of future parallel architectures
• What is productivity?

Task-centric runtimes:
- Shared memory: OpenMP, Tascel, Quark, TBB*, PPL, Kokkos**
- Distributed Memory: StarPU*, StarSS*, DARMA**, Legion, CnC, HPX, Dagger, Hihat**, ...
 * explicit communications
 ** nascent effort

PaRSEC: a data centric programming environment based on asynchronous tasks executing on a heterogeneous distributed environment
PaRSEC = a data centric programming environment based on asynchronous tasks executing on a heterogeneous distributed environment

- An execution unit taking a set of input data and generating, upon completion, a different set of output data.
- Tasks and data have a coherent distributed scope (managed by the runtime)
- Low-level API allowing the design of Domain Specific Languages (JDF, DTD, TTG)
- Supports distributed heterogeneous environments.
 - Communications are implicit (the runtime moves data)
 - Built-in resilience, performance instrumentation and analysis (R, python)
PaRSEC: a generic runtime system for asynchronous, architecture aware scheduling of fine-grained tasks on distributed many-core heterogeneous architectures

Concepts
- **Clear separation of concerns**: compiler optimize each task class, developer describe dependencies between tasks, the runtime orchestrate the dynamic execution
- Interface with the application developers through specialized domain specific languages (PTG/JDF/TTG, Python, insert_task, fork/join, ...)
- Separate algorithms from data distribution
- Make control flow executions a relic

Domain Science
- \(H|\Psi> = E|\Psi> \)
- High-level DSLs
- \[
\frac{1}{4} \varepsilon_{ef} \varepsilon_{ij} i_{mn} \varepsilon_{ab} - \frac{1}{2} \varepsilon_{ef} i_{mi} n_{tj} + n_{ij}
\]
- Sequential Source Code
- for \(j = 1:M \)
 for \(k = 1:L \)
 \(T[i,j] = X[i][j][k] * Y[k] \)

PaRSEC: Dynamic Task Discovery
- Portability layer for heterogeneous architectures
- Scheduling policies adapt every execution to the hardware & ongoing system status
- Data movements between producers and consumers are inferred from dependencies. Communications/computations overlap naturally unfold
- Coherency protocols minimize data movements
- Memory hierarchies (including NVRAM and disk) integral part of the scheduling decisions
The PaRSEC framework

Hardware
- Cores: ARM, Power, X86
- Memory Hierarchies
- Data Coherence
- Data Movement: MPI, UCX, GasNet, OpenACC, OpenCL
- Accelerators: Xeon Phi, CUDA, OpenCL

Domain Specific Extensions
- Dense LA
- Sparse LA
- Chemistry
- Compact Representation - PTG
- Dynamic Discovered Representation - DTG
- TTG

Parallel Runtime
- Distributed Scheduling
- Data Collections
- Data Movement
- Collective Patterns
- Task classes
- Specialized Kernels

User
- Middleware
- Hardware
The PaRSEC data

- A data is a manipulation token, the basic logical element (view) used in the description of the dataflow
 - Locations: have multiple coherent copies (remote node, device, checkpoint)
 - Shape: can have different memory layout
 - Visibility: only accessible via the most current version of the data
 - State: can be migrated / logged
- **Data collections** are ensemble of data distributed among the nodes
 - Can be regular (multi-dimensional matrices)
 - Or irregular (sparse data, graphs)
 - Can be regularly distributed (cyclic-k) or user-defined
- **Data View** a subset of the data collection used in a particular algorithm (aka. submatrix, row, column,...)

- A data-copy is the practical unit of data
 - Has a **memory layout** (think MPI datatype)
 - Has a property of locality (device, NUMA domain, node)
 - Has a version associated with
 - **Multiple instances can coexist**

User defined

Runtime defined

A(k)

v1

v2

v1

v2
Start PaRSEC

Create a tasks placeholder and associate it with the PaRSEC context

Define a distributed collection of data (vector)

Add tasks.

Wait ’till completion

```c
parsec_context_t* parsec;
parsec = parsec_context_init(NULL, NULL); /* start a PaRSEC engine */

parsec_taskpool_t* parsec_tp = parsec_taskpool_new();
parsec_enqueue(parsec, parsec_tp);

parsec_vector_t dDATA;
parsc_vector_init( &dDATA, matrix_Integer, matrix_Tile,
    nodes, rank,
    1, /* tile_size*/
    N, /* Global vector size*/
    0, /* starting point */
    1 ); /* block size */
```

Data initialization and PaRSEC context setup. Common to all DSL
How to describe a graph of tasks?

- Uncountable ways
 - Generic: Dagguer (Charm++), Legion, ParalleX, Parameterized Task Graph (PaRSEC), Dynamic Task Discovery (StarPU, StarSS), Yvette (XML), Fork/Join (spawn). CnC, Uintah, DARMA, Kokkos, RAJA
 - Application specific: MADNESS

- PaRSEC runtime
 - The runtime is agnostic to the domain specific language (DSL)
 - Different DSL interoperate through the data collections
 - The DSL share
 - Distributed schedulers
 - Communication engine
 - Hardware resources
 - Data management (coherence, versioning, ...)
 - They don’t share
 - The task structure
 - The internal dataflow
DSL: The insert_task interface

Start PaRSEC
parsec_context_t* parsec;
parsec = parsec_context_init(NULL, NULL); /* start a PaRSEC engine */

Create a tasks placeholder and associate it with the PaRSEC context
parsec_taskpool_t* parsec_tp = parsec_taskpool_new();
parsec_enqueue(parsec, parsec_tp);

Define a distributed collection of data (vector)
parsec_vector_t dDATA;
parsec_vector_init(&dDATA, matrix_Integer, matrix_Tile,
nodes, rank,
1, /* tile_size*/
N, /* Global vector size*/
0, /* starting point */
1); /* block size */

Add tasks.
for(n = 0; n < N-2; n += 2) {
 parsec_insert_task(parsec_tp,
 ping_task, "PING",
 PASSED_BY_REF, DATA_AT(&dDATA, n), INPUT | FULL,
 PASSED_BY_REF, DATA_AT(&dDATA, n+1), OUT | FULL | HERE,
 0 /* Last Argument */);
 parsec_insert_task(parsec_tp,
 pong_task, "PONG",
 PASSED_BY_REF, DATA_AT(&dDATA, n+1), INPUT | FULL,
 PASSED_BY_REF, DATA_AT(&dDATA, n+2), OUT | FULL | HERE,
 0 /* Last Argument */); }

Wait 'till completion
parsec_taskpool_wait(parsec_tp);
for (k = 0; k < SIZE; k++) {
 parsec_insert_task("GEQRT",
 DATA_OF(A, k, k), INOUT|AFFINITY,
 DATA_OF(T, k, k), OUTPUT|TILE_RECT)

 for (n = k+1; n < SIZE; n++) {
 parsec_insert_task("UNMQR",
 DATA_OF(A, k, k), INPUT|TILE_L,
 DATA_OF(T, k, k), INPUT|TILE_RECT,
 DATA_OF(A, k, n), INOUT|AFFINITY)

 for (m = k+1; m < SIZE; m++) {
 parsec_insert_task("TSQRT",
 DATA_OF(A, k, k), INOUT|TILE_U,
 DATA_OF(A, m, k), INOUT|AFFINITY,
 DATA_OF(T, m, k), OUTPUT|TILE_RECT)

 for (n = k+1; n < SIZE; n++) {
 parsec_insert_task("TSMQR",
 DATA_OF(A, k, n), INOUT,
 DATA_OF(A, m, n), INOUT|AFFINITY,
 DATA_OF(A, m, k), INPUT,
 DATA_OF(T, m, k), INPUT|TILE_RECT)
 }
 }
 }
}
A dataflow description based on data tracking
A simple affine description of the algorithm can be understood and translated by a compiler into a more complex, control-flow free, form
Abide to all constraints imposed by current compiler technology

FOR k = 0 .. SIZE - 1
 A[k][k], T[k][k] <- GEQRT(A[k][k])
FOR m = k+1 .. SIZE - 1
 A[k][k]|Up, A[m][k], T[m][k] <- TSQRT(A[k][k]|Up, A[m][k], T[m][k])
FOR n = k+1 .. SIZE - 1
 A[k][n] <- UNMQR(A[k][k]|Low, T[k][k], A[k][n])
 FOR m = k+1 .. SIZE - 1
 A[k][n], A[m][n] <- TSMQR(A[m][k], T[m][k], A[k][n], A[m][n])
A dataflow description based on data tracking

A simple affine description of the algorithm can be understood and translated by a compiler into a more complex, control-flow free, form

Abide to all constraints imposed by current compiler technology
The Parameterized Task Graph (JDF)

```
GEQRT(k)

k = 0..( MT < NT ) ? MT-1 : NT-1

: A(k, k)

RW A <- (k == 0) ? A(k, k)
    : A1 TSMQR(k-1, k, k)
    -> (k < NT-1) ? A UNMQR(k, k+1 .. NT-1) [type = LOWER]
    -> (k < MT-1) ? A1 TSQRT(k, k+1) [type = UPPER]
    -> (k == MT-1) ? A(k, k) [type = UPPER]

WRITE T <- T(k, k)
    -> T(k, k)
    -> (k < NT-1) ? T UNMQR(k, k+1 .. NT-1)

BODY [type = CPU] /* default */
    zgeqrt( A, T );
END

BODY [type = CUDA]
    cuda_zgeqrt( A, T );
END
```

- A dataflow parameterized and concise language
- Accept non-dense iterators
- Allow inlined C/C++ code to augment the language [any expression]
- Termination mechanism part of the runtime (i.e. needs to know the number of tasks per node)
- The dependencies had to be globally (and statically) defined prior to the execution
- Dynamic DAGs non-natural
- No data dependent DAGs

• A dataflow parameterized and concise language
• Accept non-dense iterators
• Allow inlined C/C++ code to augment the language [any expression]
• Termination mechanism part of the runtime (i.e. needs to know the number of tasks per node)
• The dependencies had to be globally (and statically) defined prior to the execution
• Dynamic DAGs non-natural
• No data dependent DAGs
Relaxing constraints: Unhindered parallelism

• The only requirement is that upon a task completion the descendants are locally known
 • Information packed and propagated to participants where the descendent tasks are supposed to execute

• Uncountable DAGs
 • ”%option nb_local_tasks_fn = ...”
 • Provide support for user defined global termination

• Add support for dynamic DAGs
 • Properties of the algorithm / tasks
 • ”hash_fn = ...”
 • ”find_deps_fn = ...”
Evaluating the scheduling overhead

Benchmarking the scheduling overhead on 1D-stencil problem.

- Tasks are no-op, 0 flops per task;
- OpenMP in gcc 5.1 vs PaRSEC-rc1;
Experiments on Arc machines,
• E5-2650 v3 @ 2.30GHz
• 20 cores
• gcc 6.3
• MKL 2016
• PaRSEC-2.0-rc1
• StarPU 1.2.1
• PLASMA 1.8
QR factorization: heterogeneous

Experiments on Arc machines,

- E5-2650 v3 @ 2.30GHz
- 20 cores
- gcc 6.3
- MKL 2016
- PaRSEC-2.0-rc1
- StarPU 1.2.1
- CUDA 7.0

![Graph of performance results](image-url)
QR factorization: heterogeneous

Experiments on Arc machines,
- E5-2650 v3 @ 2.30GHz
- 20 cores
- gcc 6.3
- MKL 2016
- PaRSEC-2.0-rc1
- StarPU 1.2.1
- CUDA 7.0

![Graph showing performance of different algorithms](image)

Hybrid DGEQRF on Bunsen (16 cores CPU and 3 K40c GPUs)

<table>
<thead>
<tr>
<th>Matrix Size (N)</th>
<th>Performance (Tflop/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10K</td>
<td>MAGMA-1K40</td>
</tr>
<tr>
<td>20K</td>
<td>h-PaRSEC-1K40</td>
</tr>
<tr>
<td>30K</td>
<td>PaRSEC-1K40</td>
</tr>
<tr>
<td>40K</td>
<td>MAGMA-2K40</td>
</tr>
<tr>
<td>50K</td>
<td>h-PaRSEC-2K40</td>
</tr>
<tr>
<td>60K</td>
<td>PaRSEC-2K40</td>
</tr>
<tr>
<td>70K</td>
<td>MAGMA-3K40</td>
</tr>
<tr>
<td></td>
<td>h-PaRSEC-3K40</td>
</tr>
<tr>
<td></td>
<td>PaRSEC-3K40</td>
</tr>
</tbody>
</table>

- B: big tile size
- b: small tile size
- ib: inner block size

MAGMA runs out of GPU memory
QR factorization: distributed memory

• Optimizations for distributed memory:
 • Controlling Task Insertion Rate
 • DAG Trimming
 • No redundant data transfer
 • Flushing not needed data

• Experiments
 • Intel Xeon CPU E5-2650 v3 @ 2.30GHz
 • 8 nodes with 20 cores each
 • 64GB RAM, Infiniband FDR 56G
 • Open MPI 2.0.1
Dense Linear Algebra
SLATE = ScaLAPACK + runtime (PaRSEC)

DGEQRF performance strong scaling
Cray XT5 (Kraken) - N = M = 41,472

DENSE LINEAR ALGEBRA (192 GPU CLUSTER)
Keeneland

h stands for dynamic Hierarchical algorithms
(a task can divide itself)

FUNCTIONALITY	COVERAGE
Linear Systems of Equations | Cholesky, LU (inc. pivoting, PP), LDL (prototype)
Least Squares | QR & LQ
Symmetric Eigenvalue Problem | Reduction to Band (prototype)
Level 3 Tile BLAS | GEMM, TRSM, TRMM, HEMM/SYMM, HERK/SYRK, HER2K/SYRK
Auxiliary Subroutines | Matrix generation (PLRNT, PLGHE/PLGSY, PLTMG), Norm computation (LANGE, LANHE/LANSY, LANTR), Extra functions (LASET, LACPY, LASCAL, GEAD, TRADD, PRINT), Generic Map functions
Sparse Linear Algebra

Advanced examples
Sparse direct solver over GPUs: PaStiX

Tasks structure
POTRF
TRSM
SYRK
GEMM

(a) Dense tile task decomposition
(b) Decomposition of the task applied while processing one panel

M. Faverge - ANR SOLHAR
July 3, 2014 - 57

DAG representation

POTRF
TRSM
T=>T
TRSM
T=>T
T=>T
TRSM
T=>T
C=>B
GEMM
C=>B
GEMM
C=>B
SYRK
C=>A
C=>A
C=>A
SYRK
C=>A
C=>A
T=>T
TRSM
C=>C
TRSM
C=>C
C=>C
TRSM
C=>C
C=>A
C=>A
C=>A
POTRF
T=>T
T=>T
T=>T
T=>T
C=>B
SYRK
C=>A
C=>B
SYRK
C=>A
C=>B
C=>B
SYRK
T=>T
C=>A
C=>A
C=>A
C=>A
C=>B
TRSM
C=>C
TRSM
C=>C
C=>C
TRSM
C=>C
C=>A
POTRF
T=>T
T=>T
TRSM
C=>C
C=>A
C=>B
C=>B
C=>C

(c) Dense DAG
(d) Sparse DAG representation of a sparse \(LDL^T\) factorization

SPARSE DIRECT SOLVER PaSTIX

Performance (GFlop/s)

Cores: 3, 6, 9

afshol10
FilterV2
Flan
audi
MHD
Geo1438
pmlDF
HOOK
Serena

(D,L)+(Z,L)
(D,L)+(L,L)
(D,L)+(L,L)
(D,L)+(L,L)
(D,L)+(L,L)
(D,L)+(L,L)
(D,L)+(L,L)
(D,L)+(L,L)
(D,L)+(L,L)

Total, Inria Bordeaux, Inria Pau, LaBRI, ICL
DIP: Elastodynamic Wave Propagation

\[
\begin{align*}
\sigma_h^{n+1/2} &= \sigma_h^n + M_t^{-1}\Delta t R \sigma_h^{n+1/2} \\
\sigma_h^{n+3/2} &= \sigma_h^n + M_t^{-1}\Delta t R \sigma_h^{n+1}
\end{align*}
\]

UpdateVelocity

UpdateStress

For \(n = 1 : n\text{_timesteps}_T \)

Communication(\(\sigma_h^{n+1/2} \))

\(v_h^{n+1} \leftarrow \text{computeVelocity}(v_h^n, \sigma_h^{n+1/2}, \Delta t) \)

Communication(\(v_h^{n+1} \))

\(\sigma_h^{n+3/2} \leftarrow \text{computeStress}(\sigma_h^{n+1/2}, v_h^{n+1}, \Delta t) \)

End For \(t \)

Finer grain partitioning compared with MPI

Increased communications but also increased potential for parallelism

Need for load-balancing

Dynamically redistribute the data

- use PAPI counters to estimate the imbalance
- reshuffle the frontiers to balance the workload

Runtimes

DAG of DIP

For \(n = 1 : n\text{_timesteps}_T \)

Communication(\(\sigma_h^{n+1/2} \))

\(v_h^{n+1} \leftarrow \text{computeVelocity}(v_h^n, \sigma_h^{n+1/2}, \Delta t) \)

Communication(\(v_h^{n+1} \))

\(\sigma_h^{n+3/2} \leftarrow \text{computeStress}(\sigma_h^{n+1/2}, v_h^{n+1}, \Delta t) \)

End For \(t \)

Dynamically redistribute the data

- use PAPI counters to estimate the imbalance
- reshuffle the frontiers to balance the workload

Perfect

PaRSEC

MPI

Not HT ready

Numerical illustration

Trace comparison

Figure: **MPI-based** \(t = 2.517s \)

Figure: **PaRSEC version (NUMA-aware, granularity x6)** \(t = 2.060s \)

Total, Inria Bordeaux, Inria Pau, ICL
Quantum Chemistry: PaRSEC NWChem Integration

• "Seamless" integration: NWChem holds kernels above Global Array, we replaced ¾ of them as PaRSEC operations

• Interoperability: In PaRSEC operations, the data is pulled from Global Array locally, then dispatched, computed, and pushed back into the Global Array
Quantum Chemistry: PaRSEC NWChem Integration

• "Seamless" integration: NWChem holds kernels above Global Array, we replaced ¾ of them as PaRSEC operations

• Interoperability: In PaRSEC operations, the data is pulled from Global Array locally, then dispatched, computed, and pushed back into the Global Array

• Better scaling is due to increased parallelism in the PaRSEC representation:
 • Reduction trees instead of chains of operations
 • Parallel independent sort operations
 • Optimized data gather / dispatch
 • Global Array read / write made local, then data transfers are asynchronous and overlapped with computations
Natural data-dependent DAG Composition

Example POTRI = POTRF + TRTRI + LAUUM

- POTRF
- TRTRI
- LAUUM

3 approaches:
- **Fork/Join**: complete POTRF before starting TRTRI
- **Compiler-based**: give the three sequential algorithms to the Q2J compiler, and get a single PTG for POINV
- **Runtime-based**: tell the runtime that after POTRF is done on a tile, TRTRI can start, and let the runtime compose

Traditional

PaRSEC
Resilience support from runtime

- Recovery based on leaving data safely behind (generic & low-overhead)
- Partial DAG recovery
- Burst of errors are supported, multiple sub-DAGs will be executed in parallel with the original
- Merge resilient features into runtime:
 - Reserve minimum dataflow for protection
 - Minimize task re-execution
 - Minimize extra memory
- Export interface for user/tool – configurable data logging scheme
- Automatic resilience for non-FT applications over PaRSEC
Resilience support from runtime

- Recovery based on leaving data safely behind (generic & low-overhead)
- Partial DAG recovery
- Burst of errors are supported, multiple sub-DAGs will be executed in parallel with the original

Merge resilient features into runtime:
- Reserve minimum dataflow for protection
- Minimize task re-execution
- Minimize extra memory
- Export interface for user/tool – configurable data logging

Automatic resilience for non-FT applications over PaRSEC

Soft Error (exclude detection)
Resilience support from runtime

- Recovery based on leaving data safely behind (generic & low-overhead)
- Partial DAG recovery
- Burst of errors are supported, multiple sub-DAGs will be executed in parallel with the original

Merge resilient features into runtime:
- Reserve minimum dataflow for protection
- Minimize task re-execution
- Minimize extra memory
- Export interface for user/tool—configurable data logging
- Automatic resilience for non-FT applications over PaRSEC

Sub-DAG recovery

Remote Data Logging Protection for Cholesky on Dancer16-31

- Non-FT
- FT-Logging_Interval=10
- FT-Logging_Interval=20
- Overhead-Logging_Interval=10
- Overhead-Logging_Interval=20

Hard Error (remote data logging)
The PaRSEC ecosystem

- Support for many different types of applications
 - Dense Linear Algebra: DPLASMA, MORSE/Chameleon
 - Sparse Linear Algebra: PaSTIX
 - Geophysics: Total - Elastodynamic Wave Propagation
 - Chemistry: NWChem Coupled Cluster, MADNESS, TiledArray
 - *: ScaLAPACK, MORSE/Chameleon, SLATE

- A set of tools to understand performance, profile and debug

- A resilient distributed heterogeneous moldable runtime

Figure 11. Power Profiles of the Cholesky Factorization.

Figure 12. Power Profiles of the QR Factorization.

Figure 13. Total amount of energy (joule) used for each test based on the number of cores

ACKNOWLEDGMENT

Virginia Tech, for granting access to their platform.

Ching Chang from the Department of Computer Science at...
Conclusions

• Programming can be made easy(ier)
 • Portability: inherently take advantage of all hardware capabilities
 • Efficiency: deliver the best performance on several families of algorithms
 • Domain Specific Languages to facilitate development
 • Interoperability: data is the centric piece

• Build a scientific enabler allowing different communities to focus on different problems
 • Application developers on their algorithms
 • Language specialists on Domain Specific Languages
 • System developers on system issues
 • Compilers on optimizing the task code

• Interact with hardware designers to improve support for runtime needs
 • HiHAT: A New Way Forward
 for Hierarchical Heterogeneous Asynchronous Tasking
Distributed Database: TileDB & PaRSEC

• TileDB: Distributed database for LAQL (Linear Algebra Query Language)

 SELECT QR(A.values) FROM A WHERE d(A.coord, 0.0) < 10.0;

• Existing Implementation: ScaLAPACK interface
 • External program runs ScaLAPACK
 • Data is redistributed and moved to the program using phase-out; compute; phase-in approach

• Integration with PaRSEC: driver in a separate process pulls data from the database
 • Locally
 • Asynchronously
 • Building a pipeline of data in and out

Fork/Join

ScaLAPACK interface

Streamlining and synchronizing I/O

Asynchronous I/O

Time

NxM

NxM